calculate_statistics.Rd
Estimate the marginal causal survival curves for simulating time-to-event data in a discrete manner based on the methods from Daniel et al.(2020).
calculate_statistics(model, trt)
A fitted coxph model. This should be a coxph event model or censoring model.
Character. Name of the treatment assignment variable.
Two vectors containing the marginal causal survival curves for treatment arms (1 for treatment arm; 0 for control arm/placebo). Each number is the probability of the surviving the time window (t1,t2],... conditional on surviving the prior corresponding window.
If the study period for the original data is divided into discrete windows, defined by the event times in the original data, at time t0 = 0, everyone in the simulated data is still a survivor. S(x) is the estimated survival function. By the end of the window (0,t1], a proportion S(t1) still survives. The conditional probability of surviving the next window, (t1,t2], conditional on surviving the first window, is S(t2)/S(t1), and so on. This function returns the S(t2)/S(t1) in series.
Daniel R, Zhang J, Farewell D. Making apples from oranges: Comparing noncollapsible effect estimators and their standard errors after adjustment for different covariate sets. Biom J. 2021;63(3):528-557. doi:10.1002/bimj.201900297
library(survival)
data("oak")
cox_event <- coxph(Surv(OS, os.status) ~ trt + btmb + pdl1, data = oak)
calculate_statistics(model = cox_event, trt = "trt")
#> $surv_cond0
#> [1] 1.0000000 1.0000000 0.9978747 0.9978715 0.9957356 0.9957198 0.9957038
#> [8] 0.9978455 0.9978410 0.9978365 0.9934990 0.9956386 0.9956262 0.9934236
#> [15] 0.9955952 0.9977894 0.9977800 0.9955512 0.9955314 0.9955112 0.9954946
#> [22] 0.9977404 0.9977370 0.9954655 0.9977239 0.9954180 1.0000000 0.9976878
#> [29] 0.9930585 0.9953359 0.9953214 0.9953042 0.9976385 0.9952666 0.9976196
#> [36] 0.9928508 0.9976011 0.9927787 0.9975770 0.9975735 0.9975672 0.9951293
#> [43] 0.9951124 0.9950895 0.9975325 0.9975283 0.9925558 0.9950110 0.9949898
#> [50] 0.9949637 1.0000000 0.9974581 0.9974445 0.9974315 0.9948507 0.9974121
#> [57] 0.9974034 0.9947946 0.9973851 0.9947628 0.9973686 0.9973638 0.9947184
#> [64] 0.9946879 0.9973290 0.9973243 0.9973192 0.9973128 0.9946171 0.9972911
#> [71] 0.9945675 0.9918134 0.9972502 0.9972419 0.9972375 0.9972306 0.9972228
#> [78] 0.9944306 0.9971989 0.9971941 0.9943767 0.9971772 0.9971721 0.9943268
#> [85] 0.9971463 0.9971388 0.9885387 0.9971042 0.9941939 0.9941654 0.9941421
#> [92] 0.9970548 0.9881861 0.9970125 0.9970031 0.9969979 0.9909790 0.9939477
#> [99] 0.9969607 0.9969547 0.9969490 0.9938807 0.9969244 0.9938364 0.9938046
#> [106] 0.9906554 0.9968532 0.9968466 0.9968394 0.9968292 0.9968090 0.9967905
#> [113] 0.9967811 0.9967705 0.9967602 0.9967398 0.9967285 0.9967223 0.9967161
#> [120] 0.9934137 0.9900689 0.9966521 0.9932866 0.9966245 0.9966126 0.9898109
#> [127] 0.9965661 0.9896687 0.9895816 0.9929859 0.9964693 0.9964620 0.9964493
#> [134] 0.9964336 0.9857334 0.9963860 0.9963776 0.9890968 0.9926518 0.9926039
#> [141] 0.9962831 0.9925393 0.9962442 1.0000000 0.9924560 0.9923906 0.9961660
#> [148] 0.9923088 1.0000000 0.9961167 0.9961013 0.9960873 1.0000000 0.9960611
#> [155] 0.9920923 0.9960183 0.9920224 0.9959893 0.9959744 0.9959645 0.9918992
#> [162] 0.9959157 0.9958979 0.9958875 0.9917547 0.9916834 0.9916206 0.9957808
#> [169] 0.9957690 0.9872428 0.9956915 0.9956726 0.9956551 0.9956380 0.9956205
#> [176] 0.9912054 0.9955743 0.9910801 0.9910170 0.9954727 0.9954511 0.9954294
#> [183] 0.9954078 0.9907924 0.9953610 0.9906970 0.9953103 0.9952883 0.9952642
#> [190] 0.9904826 0.9951967 0.9903723 0.9951531 0.9951302 0.9902183 0.9950639
#> [197] 0.9900967 0.9949998 0.9949841 0.9949687 0.9949457 0.9847774 0.9948546
#> [204] 0.9948392 0.9948108 0.9947862 0.9947296 0.9947036 0.9946783 0.9946597
#> [211] 0.9946306 0.9946141 0.9891723 0.9945284 0.9944982 0.9889320 0.9888085
#> [218] 1.0000000 0.9943250 0.9943065 0.9942846 0.9942476 0.9942177 0.9884065
#> [225] 0.9941573 0.9941119 0.9940783 0.9940555 0.9940306 0.9939913 0.9939539
#> [232] 0.9939210 0.9938970 0.9938730 0.9938339 0.9937937 0.9937479 0.9937055
#> [239] 0.9810516 0.9935905 0.9935533 0.9935285 0.9934793 0.9934541 0.9868340
#> [246] 0.9933356 0.9933049 0.9932777 0.9932464 0.9931984 0.9931509 0.9862557
#> [253] 0.9930578 0.9930068 0.9859423 0.9928507 0.9856228 0.9926935 0.9926515
#> [260] 0.9926198 0.9925876 0.9925557 0.9925188 0.9849556 0.9923967 0.9923582
#> [267] 0.9923022 0.9922628 0.9843958 0.9920736 0.9920080 0.9919604 0.9919235
#> [274] 0.9918627 0.9917924 0.9917479 0.9916854 0.9916438 0.9915809 0.9915165
#> [281] 0.9914725 0.9914305 0.9913874 0.9913094 0.9912645 0.9912114 0.9911404
#> [288] 0.9910885 0.9910426 0.9819550 1.0000000 1.0000000 1.0000000 1.0000000
#> [295] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [302] 1.0000000 0.9894353 1.0000000 1.0000000 1.0000000 0.9889847 1.0000000
#> [309] 0.9884840 1.0000000 0.9882824 0.9764275 0.9753052 1.0000000 1.0000000
#> [316] 0.9867132 0.9863104 1.0000000 1.0000000 1.0000000 1.0000000 0.9850011
#> [323] 1.0000000 1.0000000 1.0000000 1.0000000 0.9837943 1.0000000 1.0000000
#> [330] 1.0000000 1.0000000 1.0000000 0.9816534 1.0000000 1.0000000 1.0000000
#> [337] 0.9802719 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [344] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9753036 0.9748806
#> [351] 1.0000000 0.9736401 1.0000000 1.0000000 0.9714089 1.0000000 1.0000000
#> [358] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [365] 0.9607817 1.0000000 1.0000000 0.9548850 1.0000000 1.0000000 1.0000000
#> [372] 1.0000000 0.9465078 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [379] 1.0000000 0.9205256 0.9052758 1.0000000 1.0000000 1.0000000 1.0000000
#> [386] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6410363
#> [393] 1.0000000 1.0000000
#>
#> $surv_cond1
#> [1] 1.0000000 1.0000000 0.9986476 0.9986455 0.9972853 0.9972752 0.9972649
#> [8] 0.9986289 0.9986261 0.9986232 0.9958595 0.9972233 0.9972154 0.9958113
#> [15] 0.9971955 0.9985931 0.9985871 0.9971674 0.9971548 0.9971419 0.9971313
#> [22] 0.9985618 0.9985596 0.9971127 0.9985513 0.9970823 1.0000000 0.9985283
#> [29] 0.9955779 0.9970299 0.9970206 0.9970096 0.9984968 0.9969856 0.9984847
#> [36] 0.9954450 0.9984729 0.9953989 0.9984575 0.9984553 0.9984513 0.9968978
#> [43] 0.9968871 0.9968724 0.9984291 0.9984264 0.9952563 0.9968222 0.9968087
#> [50] 0.9967920 1.0000000 0.9983816 0.9983729 0.9983646 0.9967198 0.9983522
#> [57] 0.9983467 0.9966840 0.9983350 0.9966636 0.9983244 0.9983214 0.9966352
#> [64] 0.9966157 0.9982992 0.9982961 0.9982929 0.9982888 0.9965704 0.9982749
#> [71] 0.9965388 0.9947813 0.9982488 0.9982435 0.9982407 0.9982363 0.9982313
#> [78] 0.9964512 0.9982160 0.9982130 0.9964167 0.9982022 0.9981989 0.9963847
#> [85] 0.9981824 0.9981776 0.9926883 0.9981555 0.9962998 0.9962815 0.9962666
#> [92] 0.9981239 0.9924623 0.9980969 0.9980909 0.9980875 0.9942469 0.9961422
#> [99] 0.9980638 0.9980599 0.9980563 0.9960993 0.9980405 0.9960709 0.9960506
#> [106] 0.9940395 0.9979950 0.9979908 0.9979862 0.9979797 0.9979668 0.9979550
#> [113] 0.9979490 0.9979422 0.9979356 0.9979226 0.9979154 0.9979114 0.9979074
#> [120] 0.9958005 0.9936638 0.9978665 0.9957191 0.9978489 0.9978412 0.9934985
#> [127] 0.9978115 0.9934074 0.9933515 0.9955267 0.9977497 0.9977450 0.9977369
#> [134] 0.9977268 0.9908886 0.9976964 0.9976910 0.9930406 0.9953127 0.9952820
#> [141] 0.9976305 0.9952406 0.9976056 1.0000000 0.9951873 0.9951454 0.9975557
#> [148] 0.9950930 1.0000000 0.9975241 0.9975143 0.9975053 1.0000000 0.9974886
#> [155] 0.9949544 0.9974612 0.9949096 0.9974427 0.9974331 0.9974268 0.9948306
#> [162] 0.9973956 0.9973842 0.9973775 0.9947380 0.9946923 0.9946521 0.9973092
#> [169] 0.9973016 0.9918512 0.9972521 0.9972400 0.9972288 0.9972179 0.9972067
#> [176] 0.9943860 0.9971771 0.9943057 0.9942652 0.9971120 0.9970982 0.9970844
#> [183] 0.9970705 0.9941213 0.9970405 0.9940601 0.9970081 0.9969940 0.9969786
#> [190] 0.9939226 0.9969354 0.9938518 0.9969075 0.9968928 0.9937530 0.9968504
#> [197] 0.9936750 0.9968093 0.9967993 0.9967893 0.9967746 0.9902675 0.9967163
#> [204] 0.9967064 0.9966882 0.9966725 0.9966363 0.9966196 0.9966034 0.9965915
#> [211] 0.9965729 0.9965623 0.9930819 0.9965074 0.9964880 0.9929277 0.9928485
#> [218] 1.0000000 0.9963771 0.9963653 0.9963512 0.9963276 0.9963084 0.9925904
#> [225] 0.9962696 0.9962406 0.9962190 0.9962045 0.9961885 0.9961633 0.9961393
#> [232] 0.9961182 0.9961029 0.9960875 0.9960624 0.9960367 0.9960073 0.9959802
#> [239] 0.9878707 0.9959064 0.9958826 0.9958667 0.9958352 0.9958190 0.9915802
#> [246] 0.9957430 0.9957233 0.9957059 0.9956858 0.9956550 0.9956246 0.9912084
#> [253] 0.9955648 0.9955321 0.9910069 0.9954320 0.9908015 0.9953312 0.9953043
#> [260] 0.9952839 0.9952632 0.9952428 0.9952191 0.9903722 0.9951407 0.9951160
#> [267] 0.9950800 0.9950548 0.9900120 0.9949334 0.9948913 0.9948608 0.9948370
#> [274] 0.9947980 0.9947530 0.9947244 0.9946842 0.9946575 0.9946172 0.9945758
#> [281] 0.9945476 0.9945206 0.9944929 0.9944428 0.9944139 0.9943798 0.9943342
#> [288] 0.9943009 0.9942714 0.9884400 1.0000000 1.0000000 1.0000000 1.0000000
#> [295] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [302] 1.0000000 0.9932411 1.0000000 1.0000000 1.0000000 0.9929520 1.0000000
#> [309] 0.9926309 1.0000000 0.9925014 0.9848816 0.9841577 1.0000000 1.0000000
#> [316] 0.9914937 0.9912349 1.0000000 1.0000000 1.0000000 1.0000000 0.9903940
#> [323] 1.0000000 1.0000000 1.0000000 1.0000000 0.9896185 1.0000000 1.0000000
#> [330] 1.0000000 1.0000000 1.0000000 0.9882421 1.0000000 1.0000000 1.0000000
#> [337] 0.9873530 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [344] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9841528 0.9838793
#> [351] 1.0000000 0.9830785 1.0000000 1.0000000 0.9816376 1.0000000 1.0000000
#> [358] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [365] 0.9747610 1.0000000 1.0000000 0.9709319 1.0000000 1.0000000 1.0000000
#> [372] 1.0000000 0.9654769 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [379] 1.0000000 0.9484481 0.9383648 1.0000000 1.0000000 1.0000000 1.0000000
#> [386] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.7524613
#> [393] 1.0000000 1.0000000
#>