Skip to contents

covariance type

Usage

cov_type

cov_type_spatial

Format

vector of supported covariance structures. cov_type for common time points covariance structures, cov_type_spatial for spatial covariance structures.

Details

abbreviation for covariance structures

Common Covariance Structures

Structure Description Parameters \((i, j)\) element
ad Ante-dependence \(m\) \(\sigma^{2}\prod_{k=i}^{j-1}\rho_{k}\)
adh Heterogeneous ante-dependence \(2m-1\) \(\sigma_{i}\sigma_{j}\prod_{k=i}^{j-1}\rho_{k}\)
ar1 First-order auto-regressive \(2\) \(\sigma^{2}\rho^{\left \vert {i-j} \right \vert}\)
ar1h Heterogeneous first-order auto-regressive \(m+1\) \(\sigma_{i}\sigma_{j}\rho^{\left \vert {i-j} \right \vert}\)
cs Compound symmetry \(2\) \(\sigma^{2}\left[ \rho I(i \neq j)+I(i=j) \right]\)
csh Heterogeneous compound symmetry \(m+1\) \(\sigma_{i}\sigma_{j}\left[ \rho I(i \neq j)+I(i=j) \right]\)
toep Toeplitz \(m\) \(\sigma_{\left \vert {i-j} \right \vert +1}\)
toeph Heterogeneous Toeplitz \(2m-1\) \(\sigma_{i}\sigma_{j}\rho_{\left \vert {i-j} \right \vert}\)
us Unstructured \(m(m+1)/2\) \(\sigma_{ij}\)

where \(i\) and \(j\) denote \(i\)-th and \(j\)-th time points, respectively, out of total \(m\) time points, \(1 \leq i, j \leq m\).

Note the ante-dependence covariance structure in this package refers to homogeneous ante-dependence, while the ante-dependence covariance structure from SAS PROC MIXED refers to heterogeneous ante-dependence and the homogeneous version is not available in SAS.

Spatial Covariance structures

Structure Description Parameters \((i, j)\) element
sp_exp spatial exponential \(2\) \(\sigma^{2}\rho^{-d_{ij}}\)

where \(d_{ij}\) denotes the Euclidean distance between time points \(i\) and \(j\).

Functions

  • cov_type: non-spatial covariance structure

  • cov_type_spatial: spatial covariance structure