Utility function for Generalized G-computation for Binary Outcomes
Source:R/utils.R
gcomp_binary.Rd
Wrapper function for targeting a marginal treatment effect using g-computation using the beeca package. Intended for binary endpoints.
Usage
gcomp_binary(
data,
outcome = "CRIT1FLN",
treatment = "TRT",
covariates = c("BASE", "STRATA", "REGION"),
reference = "Placebo",
contrast = "diff",
method = "Ge",
type = "HC0",
...
)
Arguments
- data
A data.frame containing the analysis dataset.
- outcome
Name of the binary outcome variable (as string).
- treatment
Name of the treatment variable (as string).
- covariates
Character vector of covariate names to adjust for.
- reference
Reference level for the treatment variable (default: "Placebo").
- contrast
Type of contrast to compute (default: "diff").
- method
Marginal estimation method for variance (default: "Ge").
- type
Variance estimator type (default: "HC0").
- ...
Additional arguments passed to
beeca::get_marginal_effect()
.
Value
A named list with treatment effect estimate, standard error, and degrees of freedom (if applicable).
Examples
# Load required packages
library(rbmiUtils)
library(beeca) # for get_marginal_effect()
library(dplyr)
# Load example data
data("ADMI")
# Ensure correct factor levels
ADMI <- ADMI %>%
mutate(
TRT = factor(TRT, levels = c("Placebo", "Drug A")),
STRATA = factor(STRATA),
REGION = factor(REGION)
)
# Apply g-computation for binary responder
result <- gcomp_binary(
data = ADMI,
outcome = "CRIT1FLN",
treatment = "TRT",
covariates = c("BASE", "STRATA", "REGION"),
reference = "Placebo",
contrast = "diff",
method = "Ge", # from beeca: GEE robust sandwich estimator
type = "HC0" # from beeca: heteroskedasticity-consistent SE
)
# Print results
print(result)
#> $trt
#> $trt$est
#> [1] -0.0632916
#>
#> $trt$se
#> [1] 0.001189759
#>
#> $trt$df
#> [1] NA
#>
#>