Performs logistic regression and estimates marginal effects for binary outcomes.
Usage
gcomp_responder(
data,
vars,
reference_levels = NULL,
var_method = "Ge",
type = "HC0",
contrast = "diff"
)Arguments
- data
A data.frame with one visit of data.
- vars
A list containing
group,outcome,covariates, andvisit.- reference_levels
Optional vector specifying reference level(s) of the treatment factor.
- var_method
Marginal variance estimation method (default: "Ge").
- type
Type of robust variance estimator (default: "HC0").
- contrast
Type of contrast to compute (default: "diff").
Value
A named list containing estimates and standard errors for treatment comparisons and within-arm means.
Examples
# \donttest{
library(dplyr)
library(rbmi)
library(rbmiUtils)
data("ADMI")
# Prepare data for a single visit
ADMI <- ADMI |>
mutate(
TRT = factor(TRT, levels = c("Placebo", "Drug A")),
STRATA = factor(STRATA),
REGION = factor(REGION)
)
dat_single <- ADMI |>
filter(AVISIT == "Week 24")
vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CRIT1FLN",
covariates = c("BASE", "STRATA", "REGION")
)
result <- gcomp_responder(
data = dat_single,
vars = vars,
reference_levels = "Placebo"
)
print(result)
#> $`trt_Drug A-Placebo`
#> $`trt_Drug A-Placebo`$est
#> [1] -0.03081266
#>
#> $`trt_Drug A-Placebo`$se
#> [1] 0.001122321
#>
#> $`trt_Drug A-Placebo`$df
#> [1] NA
#>
#>
#> $`lsm_Drug A`
#> $`lsm_Drug A`$est
#> [1] 7.701861e-05
#>
#> $`lsm_Drug A`$se
#> [1] 5.448088e-05
#>
#> $`lsm_Drug A`$df
#> [1] NA
#>
#>
#> $lsm_Placebo
#> $lsm_Placebo$est
#> [1] 0.03088968
#>
#> $lsm_Placebo$se
#> [1] 0.001120489
#>
#> $lsm_Placebo$df
#> [1] NA
#>
#>
# }