tidy_pool_obj.Rd
This function processes a pooled analysis object of class pool
into a tidy tibble format.
It adds contextual information, such as whether a parameter is a treatment comparison or a least squares mean,
dynamically identifies visit names from the parameter
column, and provides additional columns for parameter type,
least squares mean type, and visit.
tidy_pool_obj(pool_obj)
A tibble containing the processed pooled analysis results. The tibble includes columns for the parameter, description, estimates, standard errors, confidence intervals, p-values, visit, parameter type, and least squares mean type.
The function rounds numeric columns to three decimal places for presentation. It dynamically processes
the parameter
column by separating it into components (e.g., type of estimate, reference vs. alternative arm, and visit),
and provides informative descriptions in the output.
# Example usage:
library(dplyr)
library(rbmi)
data("ADMI")
N_IMPUTATIONS <- 100
BURN_IN <- 200
BURN_BETWEEN <- 5
# Convert key columns to factors
ADMI$TRT <- factor(ADMI$TRT, levels = c("Placebo", "Drug A"))
ADMI$USUBJID <- factor(ADMI$USUBJID)
ADMI$AVISIT <- factor(ADMI$AVISIT)
# Define key variables for ANCOVA analysis
vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CHG",
covariates = c("BASE", "STRATA", "REGION") # Covariates for adjustment
)
# Specify the imputation method (Bayesian) - need for pool step
method <- rbmi::method_bayes(
n_samples = N_IMPUTATIONS,
burn_in = BURN_IN,
burn_between = BURN_BETWEEN
)
# Perform ANCOVA Analysis on Each Imputed Dataset
ana_obj_ancova <- analyse_mi_data(
data = ADMI,
vars = vars,
method = method,
fun = ancova, # Apply ANCOVA
delta = NULL # No sensitivity analysis adjustment
)
pool_obj_ancova <- pool(ana_obj_ancova)
tidy_df <- tidy_pool_obj(pool_obj_ancova)
# Print tidy data frames
print(tidy_df)
#> # A tibble: 6 × 10
#> parameter description visit parameter_type lsm_type est se lci
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 trt_Week 24 Treatment … Week… trt NA -2.17 0.182 -2.53
#> 2 lsm_ref_Week 24 Least Squa… Week… lsm ref 0.0782 0.131 -0.179
#> 3 lsm_alt_Week 24 Least Squa… Week… lsm alt -2.09 0.126 -2.34
#> 4 trt_Week 48 Treatment … Week… trt NA -3.81 0.256 -4.31
#> 5 lsm_ref_Week 48 Least Squa… Week… lsm ref 0.0481 0.185 -0.316
#> 6 lsm_alt_Week 48 Least Squa… Week… lsm alt -3.76 0.176 -4.11
#> # ℹ 2 more variables: uci <dbl>, pval <dbl>