Covariate adjusted glm model
Arguments
- formula
(
formula
) A formula of analysis.- data
(
data.frame
) Input data frame.- treatment
(
formula
orcharacter(1)
) A formula of treatment assignment or assignment by stratification, or a string name of treatment assignment.- contrast
(
function
orcharacter(1)
) A function to calculate the treatment effect, or character of "difference", "risk_ratio", "odds_ratio" for default contrasts.- contrast_jac
(
function
) A function to calculate the Jacobian of the contrast function. Ignored if using default contrasts.- vcov
(
function
) A function to calculate the variance-covariance matrix of the treatment effect, includingvcovHC
andvcovG
.- family
(
family
) A family object of the glm model.- vcov_args
(
list
) Additional arguments passed tovcov
.- pair
Pairwise treatment comparison.
- ...
Additional arguments passed to
glm
orglm.nb
.
Details
If family is MASS::negative.binomial(NA)
, the function will use MASS::glm.nb
instead of glm
.
Examples
robin_glm(
y ~ treatment * s1,
data = dummy_data,
treatment = treatment ~ s1, contrast = "difference"
)
#> Model : y ~ treatment * s1
#> Randomization: treatment ~ s1 ( Simple )
#> Variance Type: vcovG
#> Marginal Mean:
#> Estimate Std.Err 2.5 % 97.5 %
#> pbo 0.223048 0.068366 0.089054 0.3570
#> trt1 0.763992 0.077178 0.612727 0.9153
#> trt2 0.948275 0.077437 0.796502 1.1000
#>
#> Contrast : h_diff
#> Estimate Std.Err Z Value Pr(>|z|)
#> trt1 v.s. pbo 0.54094 0.10282 5.2611 1.432e-07 ***
#> trt2 v.s. pbo 0.72523 0.10302 7.0399 1.924e-12 ***
#> trt2 v.s. trt1 0.18428 0.10911 1.6890 0.09123 .
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1