This document validates RobinCar2 against RobinCar.
if (!requireNamespace("RobinCar", quietly = TRUE)) {
install.packages("RobinCar")
}
library(RobinCar)
library(RobinCar2)
library(MASS)
library(testthat)
Compare RobinCar2 to RobinCar results
Negative Binomial Working Model
The response is following negative binomial distribution with a dispersion parameter of 1. This checks the marginal means and variance.
# Make categorical outcome to test counts
# Not informative at all
dummy_data$y_c <- MASS::rnegbin(n = nrow(dummy_data), theta = 1)
test_that("marginal means", {
# Function to compare RobinCar to RobinCar2 outputs
compare_means <- function(r1, r2) {
# Estimates and variance from RobinCar
enames <- r1$result$treat
estimates1 <- r1$result$estimate
names(estimates1) <- enames
variances1 <- r1$varcov
colnames(variances1) <- enames
rownames(variances1) <- enames
# Estimates and variance for the first two
# contrast vector elements from RobinCar2
mm <- attr(r2, "marginal_mean")
estimates2 <- c(mm)
variances2 <- attr(mm, "variance")
testthat::expect_equal(estimates1, estimates2)
testthat::expect_equal(variances1, variances2)
}
families <- list(
gaussian(),
binomial(),
poisson(),
negative.binomial(theta = 1),
"nb"
) # negative binomial with unspecified dispersion parameter
for (family in families) {
for (model in c(
# ANOVA
"~ treatment",
# ANCOVA
"~ treatment + covar",
"~ treatment + covar + s1",
"~ treatment + covar + s1 + s2",
# ANHECOVA
"~ treatment * (covar)",
"~ treatment * (covar + s1)",
"~ treatment * (covar + s1 + s2)"
)) {
for (scheme in c("simple", "pocock-simon", "permuted-block")) {
for (strata in list(c(), c("s1"), c("s1", "s2"))) {
# Set formula based on parameters
if (identical(family, "nb")) {
yname <- "y_c"
} else if (identical(family$family, "gaussian")) {
yname <- "y"
} else if (identical(family$family, "binomial")) {
yname <- "y_b"
} else {
yname <- "y_c"
}
form <- as.formula(paste0(yname, model))
if (identical(family, "nb")) {
family2 <- MASS::negative.binomial(theta = NA)
} else {
family2 <- family
}
if (scheme == "simple") {
scheme2 <- "sp"
} else if (scheme == "permuted-block") {
scheme2 <- "pb"
} else {
scheme2 <- "ps"
}
if (identical(strata, c())) {
strata2 <- "1"
} else {
strata2 <- strata
}
strata2c <- paste(strata2, collapse = " + ")
scheme_form <- paste0("treatment ~ ", scheme2, "(", strata2c, ")")
# Skip simple randomization with strata
# this is fine for RobinCar2, but it returns an error
# (intentionally) with RobinCar
if (!(identical(strata, c()) & (scheme != "simple"))) {
# Use RobinCar
# We don't need to see RobinCar warnings.
set.seed(365)
suppressWarnings(
robincar1 <- robincar_glm(
df = dummy_data,
treat_col = "treatment",
response_col = yname,
formula = form,
car_scheme = scheme,
car_strata_cols = strata,
g_family = family
)
)
# Use RobinCar2
set.seed(365)
robincar2 <- robin_glm(
form = form,
data = dummy_data,
treatment = as.formula(scheme_form),
vcov = vcovG,
family = family2
)
# Compare the results
compare_means(robincar1, robincar2)
}
}
}
}
}
})
## Test passed 🎊
Linear Working Model
The response is continuous.
test_that("contrast -- standard options", {
compare_contrast <- function(r1, r2) {
# Estimates and variance from RobinCar
enames <- r1$contrast$result$contrast
estimates1 <- r1$contrast$result$estimate
names(estimates1) <- NULL
variances1 <- r1$contrast$varcov
dimnames(variances1) <- NULL
# Estimates and variance for the first two
# contrast vector elements from RobinCar2
estimates2 <- as.numeric(r2)
variances2 <- attr(r2, "variance")
testthat::expect_equal(estimates1, estimates2)
testthat::expect_equal(variances1, variances2, tolerance = 1e-4)
}
for (scheme in c("simple", "pocock-simon", "permuted-block")) {
model <- "~ treatment + covar + s1"
family <- family2 <- gaussian()
yname <- "y"
form <- as.formula(paste0(yname, model))
strata <- c("s1")
if (scheme == "simple") {
scheme2 <- "sp"
} else if (scheme == "permuted-block") {
scheme2 <- "pb"
} else {
scheme2 <- "ps"
}
if (identical(strata, c())) {
strata2 <- "1"
} else {
strata2 <- strata
}
strata2c <- paste(strata2, collapse = " + ")
scheme_form <- paste0("treatment ~ ", scheme2, "(", strata2c, ")")
run_robin1 <- function(...) {
suppressWarnings(
robincar_glm(
df = dummy_data,
treat_col = "treatment",
response_col = yname,
formula = form,
car_scheme = scheme,
car_strata_cols = strata,
g_family = family,
...
)
)
}
run_robin2 <- function(...) {
robin_glm(
form = form,
data = dummy_data,
treatment = as.formula(scheme_form),
vcov = vcovG,
family = family2,
pair = against_ref(c("pbo", "trt1", "trt2"), ref = "pbo", x = c("trt1", "trt2")),
...
)
}
# DIFFERENCE ---------------------------------------------
r1_diff <- run_robin1(contrast_h = "diff")
r2_diff <- run_robin2(contrast = "difference")
compare_contrast(r1_diff, r2_diff)
# RATIO -------------------------------------------------
r1_ratio <- run_robin1(contrast_h = "ratio")
r2_ratio <- run_robin2(contrast = "risk_ratio")
compare_contrast(r1_ratio, r2_ratio)
# ODDS RATIO --------------------------------------------
# RobinCar does not do all pairwise contrasts
r1_odds <- run_robin1(
contrast_h = function(vec) {
((vec / (1 - vec)) / (vec[1] / (1 - vec[1])))[2:3]
}
)
r2_odds <- run_robin2(contrast = "odds_ratio")
compare_contrast(r1_odds, r2_odds)
# CUSTOM FUNCTION ---------------------------------------
# This is a custom function for a contrast just to make sure
# the custom function works correctly, not for anything scientifically meaningful
r1_cust <- run_robin1(
contrast_h = function(x) x[-1] + 4
)
r2_cust <- run_robin2(
contrast = function(x, y) x + 4
)
compare_contrast(r1_cust, r2_cust)
}
})
## Test passed 🥳