
Estimate Marginal Subgroup Treatment Effects
Source:R/estimate_subgroup_effects.R
estimate_subgroup_effects.RdThe function uses a counterfactual, marginal approach based on the posterior predictive distribution. It averages over all other covariates to provide robust estimates of subgroup-specific effects.
Usage
estimate_subgroup_effects(
brms_fit,
original_data,
trt_var,
subgroup_vars = "auto",
response_type = c("continuous", "binary", "count", "survival"),
ndraws = NULL
)Arguments
- brms_fit
A fitted `brmsfit` object from `fit_brms_model()` or `run_brms_analysis()`.
- original_data
A `data.frame` containing the data. While this parameter is called "original_data" for backward compatibility, the function internally uses the processed data from `brms_fit$data` to ensure consistency with the model's factor coding and contrasts. This parameter is mainly used for validation purposes.
- trt_var
A character string specifying the name of the treatment variable.
- subgroup_vars
A character vector of subgroup variable names found in `original_data`. If set to `"auto"` (the default), the function attempts to automatically identify subgroup variables from the model's formula.
- response_type
The type of outcome variable. One of "binary", "count", "continuous", or "survival".
- ndraws
An integer specifying the number of posterior draws to use. If `NULL` (default), all available draws are used.