This function is used to calculate the logHR using cox model after obtaining the counterfactural simulations for potential outcomes from simulate_counterfactuals.

calculate_trt_effect(sim_out_1d, sim_out_0d, sim_out_1c, sim_out_0c)

Arguments

sim_out_1d

List. A list from simulate_counterfactuals for cox_event in treatment group, e.g. the cox model using OS.

sim_out_0d

List. A list from simulate_counterfactuals for cox_event in control group, e.g. the cox model using OS.

sim_out_1c

List. A list from simulate_counterfactuals for cox_event in treatment group, e.g. the cox model using 1-OS.

sim_out_0c

List. A list from simulate_counterfactuals for cox_event in control group, e.g. the cox model using 1-OS.

Value

The marginal beta (logHR)

Details

The event indicator from this function uses the equation 10', I(Y0<Y0_cens) or I(Y1<Y1_cens).

References

Daniel R, Zhang J, Farewell D. Making apples from oranges: Comparing noncollapsible effect estimators and their standard errors after adjustment for different covariate sets. Biom J. 2021;63(3):528-557. doi:10.1002/bimj.201900297

Examples

library(survival)
data("oak")

cox_event <- coxph(Surv(OS, os.status) ~ trt + btmb + pdl1, data = oak)
#
cox_censor <- coxph(Surv(OS, 1 - os.status) ~ trt + btmb + pdl1, data = oak)
bh <- basehaz(cox_event, centered = FALSE)
bh_c <- basehaz(cox_censor, centered = FALSE)
s_condi <- calculate_statistics(model = cox_event, trt = "trt")
s_condi_c <- calculate_statistics(model = cox_censor, trt = "trt")
sim_out_1d <- simulate_counterfactuals(
bh = bh, surv_cond = s_condi$surv_cond1, cpp = FALSE, M = 1000)
sim_out_0d <- simulate_counterfactuals(
bh = bh, surv_cond = s_condi$surv_cond0, cpp = FALSE, M = 1000)
sim_out_1c <- simulate_counterfactuals(
bh = bh_c, surv_cond = s_condi_c$surv_cond1, cpp = FALSE, M = 1000)
sim_out_0c <- simulate_counterfactuals(
bh = bh_c, surv_cond = s_condi_c$surv_cond0, cpp = FALSE, M = 1000)

output <- calculate_trt_effect(sim_out_1d, sim_out_0d, sim_out_1c, sim_out_0c)