Arguments
- x
 (
mmrm)
fitted model.- conf.int
 (
flag)
ifTRUEcolumns for the lower (conf.low) and upper bounds (conf.high) of coefficient estimates are included.- conf.level
 (
number)
defines the range of the optional confidence internal.- ...
 only used by
augment()to pass arguments to thepredict.mmrm_tmb()method.- newdata
 (
data.frameorNULL)
optional new data frame.- interval
 (
string)
type of interval calculation.- se_fit
 (
flag)
whether to return standard errors of fit.- type.residuals
 (
string)
passed on toresiduals.mmrm_tmb().
Functions
tidy(mmrm): derives tidytibblefrom anmmrmobject.glance(mmrm): derivesglancetibblefrom anmmrmobject.augment(mmrm): derivesaugmenttibblefrom anmmrmobject.
See also
mmrm_methods, mmrm_tmb_methods for additional methods.
Examples
fit <- mmrm(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)
# Applying tidy method to return summary table of covariate estimates.
fit |> tidy()
#> # A tibble: 11 × 6
#>    term                          estimate std.error    df statistic  p.value
#>    <chr>                            <dbl>     <dbl> <dbl>     <dbl>    <dbl>
#>  1 (Intercept)                    30.8        0.887  219.   34.7    5.96e-91
#>  2 RACEBlack or African American   1.53       0.624  169.    2.45   1.53e- 2
#>  3 RACEWhite                       5.64       0.666  157.    8.48   1.56e-14
#>  4 SEXFemale                       0.326      0.532  166.    0.613  5.41e- 1
#>  5 ARMCDTRT                        3.77       1.07   146.    3.51   5.89e- 4
#>  6 AVISITVIS2                      4.84       0.802  144.    6.04   1.27e- 8
#>  7 AVISITVIS3                     10.3        0.823  156.   12.6    1.86e-25
#>  8 AVISITVIS4                     15.1        1.31   138.   11.5    8.11e-22
#>  9 ARMCDTRT:AVISITVIS2            -0.0419     1.13   139.   -0.0371 9.70e- 1
#> 10 ARMCDTRT:AVISITVIS3            -0.694      1.19   158.   -0.584  5.60e- 1
#> 11 ARMCDTRT:AVISITVIS4             0.624      1.85   130.    0.337  7.36e- 1
fit |> tidy(conf.int = TRUE, conf.level = 0.9)
#> # A tibble: 11 × 8
#>    term           estimate std.error    df statistic  p.value conf.low conf.high
#>    <chr>             <dbl>     <dbl> <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#>  1 (Intercept)     30.8        0.887  219.   34.7    5.96e-91   29.3       32.2 
#>  2 ARMCDTRT         3.77       1.07   146.    3.51   5.89e- 4    2.01       5.54
#>  3 ARMCDTRT:AVIS…  -0.0419     1.13   139.   -0.0371 9.70e- 1   -1.90       1.82
#>  4 ARMCDTRT:AVIS…  -0.694      1.19   158.   -0.584  5.60e- 1   -2.65       1.26
#>  5 ARMCDTRT:AVIS…   0.624      1.85   130.    0.337  7.36e- 1   -2.42       3.67
#>  6 AVISITVIS2       4.84       0.802  144.    6.04   1.27e- 8    3.52       6.16
#>  7 AVISITVIS3      10.3        0.823  156.   12.6    1.86e-25    8.99      11.7 
#>  8 AVISITVIS4      15.1        1.31   138.   11.5    8.11e-22   12.9       17.2 
#>  9 RACEBlack or …   1.53       0.624  169.    2.45   1.53e- 2    0.503      2.56
#> 10 RACEWhite        5.64       0.666  157.    8.48   1.56e-14    4.55       6.74
#> 11 SEXFemale        0.326      0.532  166.    0.613  5.41e- 1   -0.549      1.20
# Applying glance method to return summary table of goodness of fit statistics.
fit |> glance()
#> # A tibble: 1 × 4
#>     AIC   BIC logLik deviance
#>   <dbl> <dbl>  <dbl>    <dbl>
#> 1 3406. 3439. -1693.    3386.
# Applying augment method to return merged `tibble` of model data, fitted and residuals.
fit |> augment()
#> # A tibble: 537 × 9
#>    .rownames  FEV1 RACE               SEX   ARMCD AVISIT USUBJID .fitted  .resid
#>        <dbl> <dbl> <fct>              <fct> <fct> <fct>  <fct>     <dbl>   <dbl>
#>  1         2  40.0 Black or African … Fema… TRT   VIS2   PT1        40.0  -1.23 
#>  2         4  20.5 Black or African … Fema… TRT   VIS4   PT1        20.5 -31.6  
#>  3         6  31.5 Asian              Male  PBO   VIS2   PT2        31.5  -4.16 
#>  4         7  36.9 Asian              Male  PBO   VIS3   PT2        36.9  -4.24 
#>  5         8  48.8 Asian              Male  PBO   VIS4   PT2        48.8   2.98 
#>  6        10  36.0 Black or African … Fema… PBO   VIS2   PT3        36.0  -1.49 
#>  7        12  37.2 Black or African … Fema… PBO   VIS4   PT3        37.2 -10.5  
#>  8        13  33.9 Asian              Fema… TRT   VIS1   PT4        33.9  -0.985
#>  9        14  33.7 Asian              Fema… TRT   VIS2   PT4        33.7  -5.93 
#> 10        16  54.5 Asian              Fema… TRT   VIS4   PT4        54.5   3.89 
#> # ℹ 527 more rows
fit |> augment(interval = "confidence")
#> # A tibble: 537 × 12
#>    .rownames  FEV1 RACE         SEX   ARMCD AVISIT USUBJID .fitted .lower .upper
#>        <dbl> <dbl> <fct>        <fct> <fct> <fct>  <fct>     <dbl>  <dbl>  <dbl>
#>  1         2  40.0 Black or Af… Fema… TRT   VIS2   PT1        40.0   40.0   40.0
#>  2         4  20.5 Black or Af… Fema… TRT   VIS4   PT1        20.5   20.5   20.5
#>  3         6  31.5 Asian        Male  PBO   VIS2   PT2        31.5   31.5   31.5
#>  4         7  36.9 Asian        Male  PBO   VIS3   PT2        36.9   36.9   36.9
#>  5         8  48.8 Asian        Male  PBO   VIS4   PT2        48.8   48.8   48.8
#>  6        10  36.0 Black or Af… Fema… PBO   VIS2   PT3        36.0   36.0   36.0
#>  7        12  37.2 Black or Af… Fema… PBO   VIS4   PT3        37.2   37.2   37.2
#>  8        13  33.9 Asian        Fema… TRT   VIS1   PT4        33.9   33.9   33.9
#>  9        14  33.7 Asian        Fema… TRT   VIS2   PT4        33.7   33.7   33.7
#> 10        16  54.5 Asian        Fema… TRT   VIS4   PT4        54.5   54.5   54.5
#> # ℹ 527 more rows
#> # ℹ 2 more variables: .se.fit <dbl>, .resid <dbl>
fit |> augment(type.residuals = "pearson")
#> # A tibble: 537 × 9
#>    .rownames  FEV1 RACE                SEX   ARMCD AVISIT USUBJID .fitted .resid
#>        <dbl> <dbl> <fct>               <fct> <fct> <fct>  <fct>     <dbl>  <dbl>
#>  1         2  40.0 Black or African A… Fema… TRT   VIS2   PT1        40.0 -0.240
#>  2         4  20.5 Black or African A… Fema… TRT   VIS4   PT1        20.5 -3.23 
#>  3         6  31.5 Asian               Male  PBO   VIS2   PT2        31.5 -0.807
#>  4         7  36.9 Asian               Male  PBO   VIS3   PT2        36.9 -1.10 
#>  5         8  48.8 Asian               Male  PBO   VIS4   PT2        48.8  0.305
#>  6        10  36.0 Black or African A… Fema… PBO   VIS2   PT3        36.0 -0.288
#>  7        12  37.2 Black or African A… Fema… PBO   VIS4   PT3        37.2 -1.08 
#>  8        13  33.9 Asian               Fema… TRT   VIS1   PT4        33.9 -0.155
#>  9        14  33.7 Asian               Fema… TRT   VIS2   PT4        33.7 -1.15 
#> 10        16  54.5 Asian               Fema… TRT   VIS4   PT4        54.5  0.398
#> # ℹ 527 more rows