Skip to contents

Common usage

A minimal call of mmrm(), consisting of only formula and data arguments will produce an object of class mmrm, mmrm_fit, and mmrm_tmb.

Here we fit a mmrm model with us (unstructured) covariance structure specified, as well as the defaults of reml = TRUE and control = mmrm_control().

library(mmrm)
fit <- mmrm(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)

The code specifies an MMRM with the given covariates and an unstructured covariance matrix for the timepoints (also called visits in the clinical trial context, here given by AVISIT) within the subjects (here USUBJID). While by default this uses restricted maximum likelihood (REML), it is also possible to use ML, see ?mmrm.

Printing the object will show you output which should be familiar to anyone who has used any popular modeling functions such as stats::lm(), stats::glm(), glmmTMB::glmmTMB(), and lme4::nlmer(). From this print out we see the function call, the data used, the covariance structure with number of variance parameters, as well as the likelihood method, and model deviance achieved. Additionally the user is provided a printout of the estimated coefficients and the model convergence information:

fit
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID)
#> Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Covariance:  unstructured (10 variance parameters)
#> Inference:   REML
#> Deviance:    3386.45
#> 
#> Coefficients: 
#>                   (Intercept) RACEBlack or African American 
#>                   30.77747548                    1.53049977 
#>                     RACEWhite                     SEXFemale 
#>                    5.64356535                    0.32606192 
#>                      ARMCDTRT                    AVISITVIS2 
#>                    3.77423004                    4.83958845 
#>                    AVISITVIS3                    AVISITVIS4 
#>                   10.34211288                   15.05389826 
#>           ARMCDTRT:AVISITVIS2           ARMCDTRT:AVISITVIS3 
#>                   -0.04192625                   -0.69368537 
#>           ARMCDTRT:AVISITVIS4 
#>                    0.62422703 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message: convergence: rel_reduction_of_f <= factr*epsmch

The summary() method then provides the coefficients table with Satterthwaite degrees of freedom as well as the covariance matrix estimate:

summary(fit)
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID)
#> Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Covariance:  unstructured (10 variance parameters)
#> Method:      Satterthwaite
#> Vcov Method: Asymptotic
#> Inference:   REML
#> 
#> Model selection criteria:
#>      AIC      BIC   logLik deviance 
#>   3406.4   3439.3  -1693.2   3386.4 
#> 
#> Coefficients: 
#>                                Estimate Std. Error        df t value Pr(>|t|)
#> (Intercept)                    30.77748    0.88656 218.80000  34.715  < 2e-16
#> RACEBlack or African American   1.53050    0.62448 168.67000   2.451 0.015272
#> RACEWhite                       5.64357    0.66561 157.14000   8.479 1.56e-14
#> SEXFemale                       0.32606    0.53195 166.13000   0.613 0.540744
#> ARMCDTRT                        3.77423    1.07415 145.55000   3.514 0.000589
#> AVISITVIS2                      4.83959    0.80172 143.88000   6.037 1.27e-08
#> AVISITVIS3                     10.34211    0.82269 155.56000  12.571  < 2e-16
#> AVISITVIS4                     15.05390    1.31281 138.47000  11.467  < 2e-16
#> ARMCDTRT:AVISITVIS2            -0.04193    1.12932 138.56000  -0.037 0.970439
#> ARMCDTRT:AVISITVIS3            -0.69369    1.18765 158.17000  -0.584 0.559996
#> ARMCDTRT:AVISITVIS4             0.62423    1.85085 129.72000   0.337 0.736463
#>                                  
#> (Intercept)                   ***
#> RACEBlack or African American *  
#> RACEWhite                     ***
#> SEXFemale                        
#> ARMCDTRT                      ***
#> AVISITVIS2                    ***
#> AVISITVIS3                    ***
#> AVISITVIS4                    ***
#> ARMCDTRT:AVISITVIS2              
#> ARMCDTRT:AVISITVIS3              
#> ARMCDTRT:AVISITVIS4              
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Covariance estimate:
#>         VIS1    VIS2    VIS3    VIS4
#> VIS1 40.5537 14.3960  4.9747 13.3867
#> VIS2 14.3960 26.5715  2.7855  7.4745
#> VIS3  4.9747  2.7855 14.8979  0.9082
#> VIS4 13.3867  7.4745  0.9082 95.5568

Common customizations

From the high-level mmrm() interface, common changes to the default function call can be specified.

Control Function

For fine control, mmrm_control() is provided. This function allows the user to choose the adjustment method for the degrees of freedom and the coefficients covariance matrix, specify optimization routines, number of cores to be used on Unix systems for trying several optimizers in parallel, provide a vector of starting parameter values, decide the action to be taken when the defined design matrix is singular, not drop unobserved visit levels. For example:

mmrm_control(
  method = "Kenward-Roger",
  optimizer = c("L-BFGS-B", "BFGS"),
  n_cores = 2,
  start = c(0, 1, 1, 0, 1, 0),
  accept_singular = FALSE,
  drop_visit_levels = FALSE
)

Note that this control list can either be passed via the control argument to mmrm, or selected controls can be directly specified in the mmrm call. We will see this below.

REML or ML

Users can specify if REML should be used (default) or if ML should be used in optimization.

fit_ml <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  reml = FALSE
)
fit_ml
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID)
#> Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Covariance:  unstructured (10 variance parameters)
#> Inference:   ML
#> Deviance:    3397.934
#> 
#> Coefficients: 
#>                   (Intercept) RACEBlack or African American 
#>                    30.9663423                     1.5086851 
#>                     RACEWhite                      ARMCDTRT 
#>                     5.6133151                     3.7761037 
#>                    AVISITVIS2                    AVISITVIS3 
#>                     4.8270155                    10.3353319 
#>                    AVISITVIS4           ARMCDTRT:AVISITVIS2 
#>                    15.0487715                    -0.0156154 
#>           ARMCDTRT:AVISITVIS3           ARMCDTRT:AVISITVIS4 
#>                    -0.6663598                     0.6317222 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message: convergence: rel_reduction_of_f <= factr*epsmch

Optimizer

Users can specify which optimizer should be used, changing from the default of four optimizers, which starts with L-BFGS-B and proceeds through the other choices if optimization fails to converge. Other choices are BFGS, CG, nlminb and other user-defined custom optimizers.

L-BFGS-B, BFGS and CG are all implemented with stats::optim() and the Hessian is not used, while nlminb is using stats::nlminb() which in turn uses both the gradient and the Hessian (by default but can be switch off) for the optimization.

fit_opt <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  optimizer = "BFGS"
)
fit_opt
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID)
#> Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Covariance:  unstructured (10 variance parameters)
#> Inference:   REML
#> Deviance:    3387.373
#> 
#> Coefficients: 
#>                   (Intercept) RACEBlack or African American 
#>                    30.9676902                     1.5046744 
#>                     RACEWhite                      ARMCDTRT 
#>                     5.6131048                     3.7755423 
#>                    AVISITVIS2                    AVISITVIS3 
#>                     4.8285855                    10.3331770 
#>                    AVISITVIS4           ARMCDTRT:AVISITVIS2 
#>                    15.0525706                    -0.0173504 
#>           ARMCDTRT:AVISITVIS3           ARMCDTRT:AVISITVIS4 
#>                    -0.6675190                     0.6309586 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message:

Covariance Structure

Covariance structures supported by the mmrm are being continuously developed. For a complete list and description please visit the covariance vignette. Below we see the function call for homogeneous compound symmetry (cs).

fit_cs <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + cs(AVISIT | USUBJID),
  data = fev_data,
  reml = FALSE
)
fit_cs
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + ARMCD * AVISIT + cs(AVISIT | USUBJID)
#> Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Covariance:  compound symmetry (2 variance parameters)
#> Inference:   ML
#> Deviance:    3536.989
#> 
#> Coefficients: 
#>                   (Intercept) RACEBlack or African American 
#>                    31.4207077                     0.5357237 
#>                     RACEWhite                      ARMCDTRT 
#>                     5.4546329                     3.4305212 
#>                    AVISITVIS2                    AVISITVIS3 
#>                     4.8326353                    10.2395076 
#>                    AVISITVIS4           ARMCDTRT:AVISITVIS2 
#>                    15.0672680                     0.2801641 
#>           ARMCDTRT:AVISITVIS3           ARMCDTRT:AVISITVIS4 
#>                    -0.5894964                     0.7939750 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message: convergence: rel_reduction_of_f <= factr*epsmch

The time points have to be unique for each subject. That is, there cannot be time points with multiple observations for any subject. The rationale is that these observations would need to be correlated, but it is not possible within the currently implemented covariance structure framework to do that correctly. Moreover, for non-spatial covariance structures, the time variable must be coded as a factor.

Weighting

Users can perform weighted MMRM by specifying a numeric vector weights with positive values.

fit_wt <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  weights = fev_data$WEIGHT
)
fit_wt
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID)
#> Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Weights:     fev_data$WEIGHT
#> Covariance:  unstructured (10 variance parameters)
#> Inference:   REML
#> Deviance:    3476.526
#> 
#> Coefficients: 
#>                   (Intercept) RACEBlack or African American 
#>                   31.20065229                    1.18452837 
#>                     RACEWhite                      ARMCDTRT 
#>                    5.36525917                    3.39695951 
#>                    AVISITVIS2                    AVISITVIS3 
#>                    4.85890820                   10.03942420 
#>                    AVISITVIS4           ARMCDTRT:AVISITVIS2 
#>                   14.79354054                    0.03418184 
#>           ARMCDTRT:AVISITVIS3           ARMCDTRT:AVISITVIS4 
#>                    0.01308088                    0.86701567 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message: convergence: rel_reduction_of_f <= factr*epsmch

Grouped Covariance Structure

Grouped covariance structures are supported by themmrm package. Covariance matrices for each group are identically structured (unstructured, compound symmetry, etc) but the estimates are allowed to vary across groups. We use the form cs(time | group / subject) to specify the group variable.

Here is an example of how we use ARMCD as group variable.

fit_cs <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + cs(AVISIT | ARMCD / USUBJID),
  data = fev_data,
  reml = FALSE
)
VarCorr(fit_cs)
#> $PBO
#>           VIS1      VIS2      VIS3      VIS4
#> VIS1 37.823638  3.601296  3.601296  3.601296
#> VIS2  3.601296 37.823638  3.601296  3.601296
#> VIS3  3.601296  3.601296 37.823638  3.601296
#> VIS4  3.601296  3.601296  3.601296 37.823638
#> 
#> $TRT
#>          VIS1     VIS2     VIS3     VIS4
#> VIS1 49.58110 10.98112 10.98112 10.98112
#> VIS2 10.98112 49.58110 10.98112 10.98112
#> VIS3 10.98112 10.98112 49.58110 10.98112
#> VIS4 10.98112 10.98112 10.98112 49.58110

We can see that the estimated covariance matrices are different in different ARMCD groups.

Adjustment Method

In additional to the residual and Between-Within degrees of freedom, both Satterthwaite and Kenward-Roger adjustment methods are available. The default is Satterthwaite adjustment of the degrees of freedom. To use e.g. the Kenward-Roger adjustment of the degrees of freedom as well as the coefficients covariance matrix, use the method argument:

A list of all allowed method is

  1. “Kenward-Roger”
  2. “Satterthwaite”
  3. “Residual”
  4. “Between-Within”
fit_kr <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  method = "Kenward-Roger"
)

Note that this requires reml = TRUE, i.e. Kenward-Roger adjustment is not possible when using maximum likelihood inference. While this adjustment choice is not visible in the print() result of the fitted model (because the initial model fit is not affected by the choice of the adjustment method), looking at the summary we see the method and the correspondingly adjusted standard errors and degrees of freedom:

summary(fit_kr)
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID)
#> Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Covariance:  unstructured (10 variance parameters)
#> Method:      Kenward-Roger
#> Vcov Method: Kenward-Roger
#> Inference:   REML
#> 
#> Model selection criteria:
#>      AIC      BIC   logLik deviance 
#>   3407.4   3440.2  -1693.7   3387.4 
#> 
#> Coefficients: 
#>                                Estimate Std. Error        df t value Pr(>|t|)
#> (Intercept)                    30.96770    0.83335 187.91000  37.160  < 2e-16
#> RACEBlack or African American   1.50465    0.62901 169.95000   2.392  0.01784
#> RACEWhite                       5.61310    0.67139 158.87000   8.360 2.98e-14
#> ARMCDTRT                        3.77556    1.07910 146.27000   3.499  0.00062
#> AVISITVIS2                      4.82859    0.80408 143.66000   6.005 1.49e-08
#> AVISITVIS3                     10.33317    0.82303 155.66000  12.555  < 2e-16
#> AVISITVIS4                     15.05256    1.30180 138.39000  11.563  < 2e-16
#> ARMCDTRT:AVISITVIS2            -0.01737    1.13154 138.39000  -0.015  0.98777
#> ARMCDTRT:AVISITVIS3            -0.66753    1.18714 158.21000  -0.562  0.57470
#> ARMCDTRT:AVISITVIS4             0.63094    1.83319 129.64000   0.344  0.73127
#>                                  
#> (Intercept)                   ***
#> RACEBlack or African American *  
#> RACEWhite                     ***
#> ARMCDTRT                      ***
#> AVISITVIS2                    ***
#> AVISITVIS3                    ***
#> AVISITVIS4                    ***
#> ARMCDTRT:AVISITVIS2              
#> ARMCDTRT:AVISITVIS3              
#> ARMCDTRT:AVISITVIS4              
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Covariance estimate:
#>         VIS1    VIS2    VIS3    VIS4
#> VIS1 40.7335 14.2740  5.1411 13.5288
#> VIS2 14.2740 26.2243  2.6391  7.3219
#> VIS3  5.1411  2.6391 14.9497  1.0341
#> VIS4 13.5288  7.3219  1.0341 95.6006

For one-dimensional contrasts as in the coefficients table above, the degrees of freedom are the same for Kenward-Roger and Satterthwaite. However, Kenward-Roger uses adjusted standard errors, hence the p-values are different.

Note that if you would like to match SAS results for an unstructured covariance model, you can use the linear Kenward-Roger approximation:

fit_kr_lin <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  method = "Kenward-Roger",
  vcov = "Kenward-Roger-Linear"
)

This is due to the different parametrization of the unstructured covariance matrix, see the Kenward-Roger vignette for details.

Variance-covariance for Coefficients

There are multiple variance-covariance estimator available for the coefficients, including:

  1. “Asymptotic”
  2. “Empirical” (Cluster Robust Sandwich)
  3. “Empirical-Jackknife”
  4. “Empirical-Bias-Reduced”
  5. “Kenward-Roger”
  6. “Kenward-Roger-Linear”

Please note that, not all combinations of variance-covariance for coefficients and method of degrees of freedom are possible, e.g. “Kenward-Roger” and “Kenward-Roger-Linear” are available only when the degrees of freedom method is “Kenward-Roger”.

Details can be found in Coefficients Covariance Matrix Adjustment vignette and Weighted Least Square Empirical Covariance.

An example of using other variance-covariance is:

fit_emp <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  method = "Satterthwaite",
  vcov = "Empirical"
)

Keeping Unobserved Visits

Sometimes not all possible time points are observed in a given data set. When using a structured covariance matrix, e.g. with auto-regressive structure, then it can be relevant to keep the correct distance between the observed time points.

Consider the following example where we have deliberately removed the VIS3 observations from our initial example data set fev_data to obtain sparse_data. We first fit the model where we do not drop the visit level explicitly, using the drop_visit_levels = FALSE choice. Second we fit the model by default without this option.

sparse_data <- fev_data[fev_data$AVISIT != "VIS3", ]
sparse_result <- mmrm(
  FEV1 ~ RACE + ar1(AVISIT | USUBJID),
  data = sparse_data,
  drop_visit_levels = FALSE
)

dropped_result <- mmrm(
  FEV1 ~ RACE + ar1(AVISIT | USUBJID),
  data = sparse_data
)
#> In AVISIT there are dropped visits: VIS3

We see that we get a message about the dropped visit level by default. Now we can compare the estimated correlation matrices:

cov2cor(VarCorr(sparse_result))
#>            VIS1      VIS2      VIS3       VIS4
#> VIS1 1.00000000 0.4051834 0.1641736 0.06652042
#> VIS2 0.40518341 1.0000000 0.4051834 0.16417360
#> VIS3 0.16417360 0.4051834 1.0000000 0.40518341
#> VIS4 0.06652042 0.1641736 0.4051834 1.00000000
cov2cor(VarCorr(dropped_result))
#>            VIS1      VIS2       VIS4
#> VIS1 1.00000000 0.1468464 0.02156386
#> VIS2 0.14684640 1.0000000 0.14684640
#> VIS4 0.02156386 0.1468464 1.00000000

We see that when using the default, second result, we just drop the VIS3 from the covariance matrix. As a consequence, we model the correlation between VIS2 and VIS4 the same as the correlation between VIS1 and VIS2. Hence we get a smaller correlation estimate here compared to the first result, which includes VIS3 explicitly.

Extraction of model features

Similar to model objects created in other packages, components of mmrm and mmrm_tmb objects can be accessed with standard methods. Additionally, component() is provided to allow deeper and more precise access for those interested in digging through model output. Complete documentation of standard model output methods supported for mmrm_tmb objects can be found at the package website.

Summary

The summary method for mmrm objects provides easy access to frequently needed model components.

fit <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)
fit_summary <- summary(fit)

From this summary object, you can easily retrieve the coefficients table.

fit_summary$coefficients
#>                                  Estimate Std. Error       df     t value
#> (Intercept)                   30.96769899  0.8293349 187.9132 37.34040185
#> RACEBlack or African American  1.50464863  0.6206596 169.9454  2.42427360
#> RACEWhite                      5.61309565  0.6630909 158.8700  8.46504747
#> ARMCDTRT                       3.77555734  1.0762774 146.2690  3.50797778
#> AVISITVIS2                     4.82858803  0.8017144 143.6593  6.02282805
#> AVISITVIS3                    10.33317002  0.8224414 155.6572 12.56401918
#> AVISITVIS4                    15.05255715  1.3128602 138.3916 11.46546844
#> ARMCDTRT:AVISITVIS2           -0.01737409  1.1291645 138.3926 -0.01538668
#> ARMCDTRT:AVISITVIS3           -0.66753189  1.1865359 158.2106 -0.56258887
#> ARMCDTRT:AVISITVIS4            0.63094392  1.8507884 129.6377  0.34090549
#>                                   Pr(>|t|)
#> (Intercept)                   7.122411e-89
#> RACEBlack or African American 1.638725e-02
#> RACEWhite                     1.605553e-14
#> ARMCDTRT                      6.001485e-04
#> AVISITVIS2                    1.366921e-08
#> AVISITVIS3                    1.927523e-25
#> AVISITVIS4                    8.242709e-22
#> ARMCDTRT:AVISITVIS2           9.877459e-01
#> ARMCDTRT:AVISITVIS3           5.745112e-01
#> ARMCDTRT:AVISITVIS4           7.337266e-01

Other model parameters and metadata available in the summary object is as follows:

str(fit_summary)
#> List of 15
#>  $ cov_type        : chr "us"
#>  $ reml            : logi TRUE
#>  $ n_groups        : int 1
#>  $ n_theta         : int 10
#>  $ n_subjects      : int 197
#>  $ n_timepoints    : int 4
#>  $ n_obs           : int 537
#>  $ beta_vcov       : num [1:10, 1:10] 0.688 -0.207 -0.163 -0.569 -0.422 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:10] "(Intercept)" "RACEBlack or African American" "RACEWhite" "ARMCDTRT" ...
#>   .. ..$ : chr [1:10] "(Intercept)" "RACEBlack or African American" "RACEWhite" "ARMCDTRT" ...
#>  $ varcor          : num [1:4, 1:4] 40.73 14.27 5.14 13.53 14.27 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:4] "VIS1" "VIS2" "VIS3" "VIS4"
#>   .. ..$ : chr [1:4] "VIS1" "VIS2" "VIS3" "VIS4"
#>  $ method          : chr "Satterthwaite"
#>  $ vcov            : chr "Asymptotic"
#>  $ coefficients    : num [1:10, 1:5] 30.97 1.5 5.61 3.78 4.83 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:10] "(Intercept)" "RACEBlack or African American" "RACEWhite" "ARMCDTRT" ...
#>   .. ..$ : chr [1:5] "Estimate" "Std. Error" "df" "t value" ...
#>  $ n_singular_coefs: int 0
#>  $ aic_list        :List of 4
#>   ..$ AIC     : num 3407
#>   ..$ BIC     : num 3440
#>   ..$ logLik  : num -1694
#>   ..$ deviance: num 3387
#>  $ call            : language mmrm(formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID), data = fev_data)
#>  - attr(*, "class")= chr "summary.mmrm"

Residuals

The residuals method for mmrm objects can be used to provide three different types of residuals:

  1. Response or raw residuals - the difference between the observed and fitted or predicted value. MMRMs can allow for heteroscedasticity, so these residuals should be interpreted with caution.
fit <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)
residuals_resp <- residuals(fit, type = "response")
  1. Pearson residuals - the raw residuals scaled by the estimated standard deviation of the response. This residual type is better suited to identifying outlying observations and the appropriateness of the covariance structure, compared to the raw residuals.
residuals_pearson <- residuals(fit, type = "pearson")
  1. Normalized or scaled residuals - the raw residuals are ‘de-correlated’ based on the Cholesky decomposition of the variance-covariance matrix. These residuals should approximately follow the standard normal distribution, and therefore can be used to check for normality (@galecki2013linear).
residuals_norm <- residuals(fit, type = "normalized")

broom extensions

mmrm also contains S3 methods methods for tidy, glance and augment which were introduced by broom. Note that these methods will work also without loading the broom package. Please see ?mmrm_tidiers for the detailed documentation.

For example, we can apply the tidy method to return a summary table of coefficient estimates:

fit |>
  tidy()
#> # A tibble: 10 × 6
#>    term                          estimate std.error    df statistic  p.value
#>    <chr>                            <dbl>     <dbl> <dbl>     <dbl>    <dbl>
#>  1 (Intercept)                    31.0        0.829  188.   37.3    7.12e-89
#>  2 RACEBlack or African American   1.50       0.621  170.    2.42   1.64e- 2
#>  3 RACEWhite                       5.61       0.663  159.    8.47   1.61e-14
#>  4 ARMCDTRT                        3.78       1.08   146.    3.51   6.00e- 4
#>  5 AVISITVIS2                      4.83       0.802  144.    6.02   1.37e- 8
#>  6 AVISITVIS3                     10.3        0.822  156.   12.6    1.93e-25
#>  7 AVISITVIS4                     15.1        1.31   138.   11.5    8.24e-22
#>  8 ARMCDTRT:AVISITVIS2            -0.0174     1.13   138.   -0.0154 9.88e- 1
#>  9 ARMCDTRT:AVISITVIS3            -0.668      1.19   158.   -0.563  5.75e- 1
#> 10 ARMCDTRT:AVISITVIS4             0.631      1.85   130.    0.341  7.34e- 1

We can also specify some details to request confidence intervals of specific confidence level:

fit |>
  tidy(conf.int = TRUE, conf.level = 0.9)
#> # A tibble: 10 × 8
#>    term           estimate std.error    df statistic  p.value conf.low conf.high
#>    <chr>             <dbl>     <dbl> <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#>  1 (Intercept)     31.0        0.829  188.   37.3    7.12e-89   29.6       32.3 
#>  2 ARMCDTRT         3.78       1.08   146.    3.51   6.00e- 4    2.01       5.55
#>  3 ARMCDTRT:AVIS…  -0.0174     1.13   138.   -0.0154 9.88e- 1   -1.87       1.84
#>  4 ARMCDTRT:AVIS…  -0.668      1.19   158.   -0.563  5.75e- 1   -2.62       1.28
#>  5 ARMCDTRT:AVIS…   0.631      1.85   130.    0.341  7.34e- 1   -2.41       3.68
#>  6 AVISITVIS2       4.83       0.802  144.    6.02   1.37e- 8    3.51       6.15
#>  7 AVISITVIS3      10.3        0.822  156.   12.6    1.93e-25    8.98      11.7 
#>  8 AVISITVIS4      15.1        1.31   138.   11.5    8.24e-22   12.9       17.2 
#>  9 RACEBlack or …   1.50       0.621  170.    2.42   1.64e- 2    0.484      2.53
#> 10 RACEWhite        5.61       0.663  159.    8.47   1.61e-14    4.52       6.70

Or we can apply the glance method to return a summary table of goodness of fit statistics:

fit |>
  glance()
#> # A tibble: 1 × 4
#>     AIC   BIC logLik deviance
#>   <dbl> <dbl>  <dbl>    <dbl>
#> 1 3407. 3440. -1694.    3387.

Finally, we can use the augment method to return a merged tibble of the data, fitted values and residuals:

fit |>
  augment()
#> # A tibble: 537 × 8
#>    .rownames  FEV1 RACE                     ARMCD AVISIT USUBJID .fitted  .resid
#>        <dbl> <dbl> <fct>                    <fct> <fct>  <fct>     <dbl>   <dbl>
#>  1         2  40.0 Black or African Americ… TRT   VIS2   PT1        40.0  -1.09 
#>  2         4  20.5 Black or African Americ… TRT   VIS4   PT1        20.5 -31.4  
#>  3         6  31.5 Asian                    PBO   VIS2   PT2        31.5  -4.34 
#>  4         7  36.9 Asian                    PBO   VIS3   PT2        36.9  -4.42 
#>  5         8  48.8 Asian                    PBO   VIS4   PT2        48.8   2.79 
#>  6        10  36.0 Black or African Americ… PBO   VIS2   PT3        36.0  -1.31 
#>  7        12  37.2 Black or African Americ… PBO   VIS4   PT3        37.2 -10.4  
#>  8        13  33.9 Asian                    TRT   VIS1   PT4        33.9  -0.851
#>  9        14  33.7 Asian                    TRT   VIS2   PT4        33.7  -5.81 
#> 10        16  54.5 Asian                    TRT   VIS4   PT4        54.5   4.02 
#> # ℹ 527 more rows

Also here we can specify details for the prediction intervals and type of residuals via the arguments:

fit |>
  augment(interval = "confidence", type.residuals = "normalized")
#> # A tibble: 537 × 11
#>    .rownames  FEV1 RACE       ARMCD AVISIT USUBJID .fitted .lower .upper .se.fit
#>        <dbl> <dbl> <fct>      <fct> <fct>  <fct>     <dbl>  <dbl>  <dbl>   <dbl>
#>  1         2  40.0 Black or … TRT   VIS2   PT1        40.0   40.0   40.0       0
#>  2         4  20.5 Black or … TRT   VIS4   PT1        20.5   20.5   20.5       0
#>  3         6  31.5 Asian      PBO   VIS2   PT2        31.5   31.5   31.5       0
#>  4         7  36.9 Asian      PBO   VIS3   PT2        36.9   36.9   36.9       0
#>  5         8  48.8 Asian      PBO   VIS4   PT2        48.8   48.8   48.8       0
#>  6        10  36.0 Black or … PBO   VIS2   PT3        36.0   36.0   36.0       0
#>  7        12  37.2 Black or … PBO   VIS4   PT3        37.2   37.2   37.2       0
#>  8        13  33.9 Asian      TRT   VIS1   PT4        33.9   33.9   33.9       0
#>  9        14  33.7 Asian      TRT   VIS2   PT4        33.7   33.7   33.7       0
#> 10        16  54.5 Asian      TRT   VIS4   PT4        54.5   54.5   54.5       0
#> # ℹ 527 more rows
#> # ℹ 1 more variable: .resid <dbl>

Other components

Specific model quantities not supported by methods can be retrieved with the component() function. The default will output all supported components.

For example, a user may want information about convergence:

component(fit, name = c("convergence", "evaluations", "conv_message"))
#> $convergence
#> [1] 0
#> 
#> $evaluations
#> function gradient 
#>       17       17 
#> 
#> $conv_message
#> [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

or the original low-level call:

component(fit, name = "call")
#> mmrm(formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID), 
#>     data = fev_data)

the user could also ask for all provided components by not specifying the name argument.

Lower level functions

Low-level mmrm

The lower level function which is called by mmrm() is fit_mmrm(). This function is exported and can be used directly. It is similar to mmrm() but lacks some post-processing and support for Satterthwaite and Kenward-Roger calculations. It may be useful for other packages that want to fit the model without the adjustment calculations.

fit_mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  weights = rep(1, nrow(fev_data)),
  reml = TRUE,
  control = mmrm_control()
)
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID)
#> Data:        fev_data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Weights:     rep(1, nrow(fev_data))
#> Covariance:  unstructured (10 variance parameters)
#> Inference:   REML
#> Deviance:    3387.373
#> 
#> Coefficients: 
#>                   (Intercept) RACEBlack or African American 
#>                   30.96769899                    1.50464863 
#>                     RACEWhite                      ARMCDTRT 
#>                    5.61309565                    3.77555734 
#>                    AVISITVIS2                    AVISITVIS3 
#>                    4.82858803                   10.33317002 
#>                    AVISITVIS4           ARMCDTRT:AVISITVIS2 
#>                   15.05255715                   -0.01737409 
#>           ARMCDTRT:AVISITVIS3           ARMCDTRT:AVISITVIS4 
#>                   -0.66753189                    0.63094392 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message: convergence: rel_reduction_of_f <= factr*epsmch

Hypothesis testing

This package supports estimation of one- and multi-dimensional contrasts (t-test and F-test calculation) with the df_1d() and df_md() functions. Both functions utilize the chosen adjustment method from the initial mmrm call for the calculation of degrees of freedom and (for Kenward-Roger methods) the variance estimates for the test-statistics.

One-dimensional contrasts

Compute the test of a one-dimensional (vector) contrast for a mmrm object with Satterthwaite degrees of freedom.

fit <- mmrm(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)

contrast <- numeric(length(component(fit, "beta_est")))
contrast[3] <- 1

df_1d(fit, contrast)
#> $est
#> [1] 5.643565
#> 
#> $se
#> [1] 0.6656093
#> 
#> $df
#> [1] 157.1382
#> 
#> $t_stat
#> [1] 8.478795
#> 
#> $p_val
#> [1] 1.564869e-14

This works similarly when choosing a Kenward-Roger adjustment:

fit_kr <- mmrm(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  method = "Kenward-Roger"
)

df_1d(fit_kr, contrast)
#> $est
#> [1] 5.643565
#> 
#> $se
#> [1] 0.6740941
#> 
#> $df
#> [1] 157.1382
#> 
#> $t_stat
#> [1] 8.372073
#> 
#> $p_val
#> [1] 2.931654e-14

We see that because this is a one-dimensional contrast, the degrees of freedoms are identical for Satterthwaite and Kenward-Roger. However, the standard errors are different and therefore the p-values are different.

Additional options for the degrees of freedom method are Residual and Between-Within.

Multi-dimensional contrasts

Compute the test of a multi-dimensional (matrix) contrast for the above defined mmrm object with Satterthwaite degrees of freedom:

contrast <- matrix(data = 0, nrow = 2, ncol = length(component(fit, "beta_est")))
contrast[1, 2] <- contrast[2, 3] <- 1

df_md(fit, contrast)
#> $num_df
#> [1] 2
#> 
#> $denom_df
#> [1] 165.5553
#> 
#> $f_stat
#> [1] 36.91143
#> 
#> $p_val
#> [1] 5.544575e-14

And for the Kenward-Roger adjustment:

df_md(fit_kr, contrast)
#> $num_df
#> [1] 2
#> 
#> $denom_df
#> [1] 165.5728
#> 
#> $f_stat
#> [1] 35.99422
#> 
#> $p_val
#> [1] 1.04762e-13

We see that for the multi-dimensional contrast we get slightly different denominator degrees of freedom for the two adjustment methods.

Also the simpler Residual and Between-Within method choices can be used of course together with multidimensional contrasts.

Support for emmeans

This package includes methods that allow mmrm objects to be used with the emmeans package. emmeans computes estimated marginal means (also called least-square means) for the coefficients of the MMRM.

fit <- mmrm(
  formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)

if (require(emmeans)) {
  emmeans(fit, ~ ARMCD | AVISIT)
}
#> Loading required package: emmeans
#> mmrm() registered as emmeans extension
#> AVISIT = VIS1:
#>  ARMCD emmean    SE  df lower.CL upper.CL
#>  PBO     33.3 0.757 149     31.8     34.8
#>  TRT     37.1 0.764 144     35.6     38.6
#> 
#> AVISIT = VIS2:
#>  ARMCD emmean    SE  df lower.CL upper.CL
#>  PBO     38.2 0.608 150     37.0     39.4
#>  TRT     41.9 0.598 146     40.7     43.1
#> 
#> AVISIT = VIS3:
#>  ARMCD emmean    SE  df lower.CL upper.CL
#>  PBO     43.7 0.462 131     42.8     44.6
#>  TRT     46.8 0.507 130     45.8     47.8
#> 
#> AVISIT = VIS4:
#>  ARMCD emmean    SE  df lower.CL upper.CL
#>  PBO     48.4 1.189 134     46.0     50.7
#>  TRT     52.8 1.188 133     50.4     55.1
#> 
#> Results are averaged over the levels of: RACE 
#> Confidence level used: 0.95

Note that the degrees of freedom choice is inherited here from the initial mmrm fit.

Tidymodels

Tidymodels

mmrm is compatible to work in a tidymodels workflow. The following is an example of how such a workflow would be constructed.

Direct fit

First we define the direct method to fit an mmrm model using the parsnip package functions linear_reg() and set_engine().

  • linear_reg() defines a model that can predict numeric values from predictors using a linear function
  • set_engine() is used to specify which package or system will be used to fit the model, along with any arguments specific to that software. We can set the method to adjust degrees of freedom directly in the call.
model <- linear_reg() |>
  set_engine("mmrm", method = "Satterthwaite") |>
  fit(FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID), fev_data)
model
#> parsnip model object
#> 
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID)
#> Data:        data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Weights:     weights
#> Covariance:  unstructured (10 variance parameters)
#> Inference:   REML
#> Deviance:    3387.373
#> 
#> Coefficients: 
#>                   (Intercept) RACEBlack or African American 
#>                   30.96769899                    1.50464863 
#>                     RACEWhite                      ARMCDTRT 
#>                    5.61309565                    3.77555734 
#>                    AVISITVIS2                    AVISITVIS3 
#>                    4.82858803                   10.33317002 
#>                    AVISITVIS4           ARMCDTRT:AVISITVIS2 
#>                   15.05255715                   -0.01737409 
#>           ARMCDTRT:AVISITVIS3           ARMCDTRT:AVISITVIS4 
#>                   -0.66753189                    0.63094392 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message: convergence: rel_reduction_of_f <= factr*epsmch

We can also pass in the full mmrm_control object into the set_engine() call:

model_with_control <- linear_reg() |>
  set_engine("mmrm", control = mmrm_control(method = "Satterthwaite")) |>
  fit(FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID), fev_data)

Predictions

Lastly, we can also obtain predictions with the predict() method:

predict(model, new_data = fev_data)
#> # A tibble: 800 × 1
#>    .pred
#>    <dbl>
#>  1  32.5
#>  2  40.0
#>  3  45.7
#>  4  20.5
#>  5  28.0
#>  6  31.5
#>  7  36.9
#>  8  48.8
#>  9  30.7
#> 10  36.0
#> # ℹ 790 more rows

Note that we need to explicitly pass new_data because the method definition does not allow to default it to the data set we used for the model fitting automatically.

By using the type = "numeric" default of predict() as above we cannot further customize the calculations. We obtain predicted values without confidence intervals or standard errors.

On the other hand, when using type = "raw" we can customize the calculations via the opts list:

predict(
  model,
  new_data = fev_data,
  type = "raw",
  opts = list(se.fit = TRUE, interval = "prediction", nsim = 10L)
)
#>          fit        se      lwr      upr
#> 1   32.47877  6.146614 20.43163 44.52591
#> 2   39.97105  0.000000 39.97105 39.97105
#> 3   45.70508  4.250211 37.37482 54.03534
#> 4   20.48379  0.000000 20.48379 20.48379
#> 5   28.01243  5.476131 17.27941 38.74545
#> 6   31.45522  0.000000 31.45522 31.45522
#> 7   36.87889  0.000000 36.87889 36.87889
#> 8   48.80809  0.000000 48.80809 48.80809
#> 9   30.73774  5.651252 19.66149 41.81399
#> 10  35.98699  0.000000 35.98699 35.98699
#> 11  42.64153  3.969457 34.86154 50.42152
#> 12  37.16444  0.000000 37.16444 37.16444
#> 13  33.89229  0.000000 33.89229 33.89229
#> 14  33.74637  0.000000 33.74637 33.74637
#> 15  44.04155  3.828116 36.53858 51.54452
#> 16  54.45055  0.000000 54.45055 54.45055
#> 17  32.31386  0.000000 32.31386 32.31386
#> 18  37.31982  4.561145 28.38014 46.25950
#> 19  46.79361  0.000000 46.79361 46.79361
#> 20  41.71154  0.000000 41.71154 41.71154
#> 21  31.17198  6.189446 19.04089 43.30307
#> 22  36.63341  5.118199 26.60192 46.66490
#> 23  39.02423  0.000000 39.02423 39.02423
#> 24  47.26333 10.080377 27.50616 67.02051
#> 25  31.93050  0.000000 31.93050 31.93050
#> 26  32.90947  0.000000 32.90947 32.90947
#> 27  41.27523  3.796356 33.83451 48.71595
#> 28  48.28031  0.000000 48.28031 48.28031
#> 29  32.23021  0.000000 32.23021 32.23021
#> 30  35.91080  0.000000 35.91080 35.91080
#> 31  45.54898  0.000000 45.54898 45.54898
#> 32  53.02877  0.000000 53.02877 53.02877
#> 33  47.16898  0.000000 47.16898 47.16898
#> 34  46.64287  0.000000 46.64287 46.64287
#> 35  50.84665  3.830296 43.33941 58.35389
#> 36  58.09713  0.000000 58.09713 58.09713
#> 37  33.21881  6.162374 21.14078 45.29684
#> 38  37.68412  5.088595 27.71066 47.65759
#> 39  44.97613  0.000000 44.97613 44.97613
#> 40  47.67506 10.030820 28.01501 67.33510
#> 41  44.32755  0.000000 44.32755 44.32755
#> 42  38.97813  0.000000 38.97813 38.97813
#> 43  43.72862  0.000000 43.72862 43.72862
#> 44  46.43393  0.000000 46.43393 46.43393
#> 45  40.34576  0.000000 40.34576 40.34576
#> 46  42.76568  0.000000 42.76568 42.76568
#> 47  40.11155  0.000000 40.11155 40.11155
#> 48  49.71974 10.042579 30.03665 69.40284
#> 49  41.46341  6.035880 29.63330 53.29351
#> 50  45.73510  5.050138 35.83701 55.63319
#> 51  53.31791  0.000000 53.31791 53.31791
#> 52  56.07641  0.000000 56.07641 56.07641
#> 53  32.16382  6.148785 20.11242 44.21522
#> 54  37.14256  5.081214 27.18356 47.10155
#> 55  41.90837  0.000000 41.90837 41.90837
#> 56  47.46284  9.994257 27.87446 67.05123
#> 57  27.78883  6.187842 15.66088 39.91677
#> 58  34.13887  5.117329 24.10909 44.16865
#> 59  34.65663  0.000000 34.65663 34.65663
#> 60  39.07791  0.000000 39.07791 39.07791
#> 61  31.18775  5.602581 20.20689 42.16861
#> 62  35.89612  0.000000 35.89612 35.89612
#> 63  41.31608  3.921156 33.63075 49.00140
#> 64  47.67264  0.000000 47.67264 47.67264
#> 65  22.65440  0.000000 22.65440 22.65440
#> 66  36.35488  4.689887 27.16287 45.54689
#> 67  45.20175  3.991518 37.37851 53.02498
#> 68  40.85376  0.000000 40.85376 40.85376
#> 69  32.60048  0.000000 32.60048 32.60048
#> 70  33.64329  0.000000 33.64329 33.64329
#> 71  44.00451  3.904690 36.35145 51.65756
#> 72  40.92278  0.000000 40.92278 40.92278
#> 73  32.14831  0.000000 32.14831 32.14831
#> 74  46.43604  0.000000 46.43604 46.43604
#> 75  41.34973  0.000000 41.34973 41.34973
#> 76  66.30382  0.000000 66.30382 66.30382
#> 77  42.79902  5.559419 31.90276 53.69528
#> 78  47.95358  0.000000 47.95358 47.95358
#> 79  53.97364  0.000000 53.97364 53.97364
#> 80  56.89204  9.993549 37.30505 76.47904
#> 81  46.35384  5.627231 35.32467 57.38301
#> 82  56.64544  0.000000 56.64544 56.64544
#> 83  49.70872  0.000000 49.70872 49.70872
#> 84  60.40497  0.000000 60.40497 60.40497
#> 85  45.98525  0.000000 45.98525 45.98525
#> 86  51.90911  0.000000 51.90911 51.90911
#> 87  41.50787  0.000000 41.50787 41.50787
#> 88  53.42727  0.000000 53.42727 53.42727
#> 89  23.86859  0.000000 23.86859 23.86859
#> 90  35.98563  0.000000 35.98563 35.98563
#> 91  43.60626  0.000000 43.60626 43.60626
#> 92  44.77520  9.854391 25.46095 64.08945
#> 93  29.59773  0.000000 29.59773 29.59773
#> 94  35.50688  0.000000 35.50688 35.50688
#> 95  55.42944  0.000000 55.42944 55.42944
#> 96  52.10530  0.000000 52.10530 52.10530
#> 97  31.69644  0.000000 31.69644 31.69644
#> 98  32.16159  0.000000 32.16159 32.16159
#> 99  51.04735  0.000000 51.04735 51.04735
#> 100 55.85987  0.000000 55.85987 55.85987
#> 101 49.11706  0.000000 49.11706 49.11706
#> 102 49.25544  0.000000 49.25544 49.25544
#> 103 51.72211  0.000000 51.72211 51.72211
#> 104 69.99128  0.000000 69.99128 69.99128
#> 105 22.07169  0.000000 22.07169 22.07169
#> 106 36.35845  4.746651 27.05519 45.66172
#> 107 46.08393  0.000000 46.08393 46.08393
#> 108 52.42288  0.000000 52.42288 52.42288
#> 109 37.69466  0.000000 37.69466 37.69466
#> 110 44.59400  0.000000 44.59400 44.59400
#> 111 52.08897  0.000000 52.08897 52.08897
#> 112 58.22961  0.000000 58.22961 58.22961
#> 113 37.22824  0.000000 37.22824 37.22824
#> 114 34.39863  0.000000 34.39863 34.39863
#> 115 45.88949  4.096691 37.86012 53.91886
#> 116 36.34012  0.000000 36.34012 36.34012
#> 117 45.44182  0.000000 45.44182 45.44182
#> 118 41.54847  0.000000 41.54847 41.54847
#> 119 43.92172  0.000000 43.92172 43.92172
#> 120 61.83243  0.000000 61.83243 61.83243
#> 121 27.25656  0.000000 27.25656 27.25656
#> 122 34.77803  4.627758 25.70779 43.84827
#> 123 45.65133  0.000000 45.65133 45.65133
#> 124 44.56078  9.962358 25.03491 64.08664
#> 125 33.19334  0.000000 33.19334 33.19334
#> 126 39.72671  4.574143 30.76155 48.69187
#> 127 45.59637  3.874711 38.00208 53.19067
#> 128 41.66826  0.000000 41.66826 41.66826
#> 129 27.12753  0.000000 27.12753 27.12753
#> 130 31.74858  0.000000 31.74858 31.74858
#> 131 44.57711  4.009727 36.71819 52.43603
#> 132 41.60000  0.000000 41.60000 41.60000
#> 133 39.45250  0.000000 39.45250 39.45250
#> 134 32.61823  0.000000 32.61823 32.61823
#> 135 34.62445  0.000000 34.62445 34.62445
#> 136 45.90515  0.000000 45.90515 45.90515
#> 137 36.17780  0.000000 36.17780 36.17780
#> 138 39.79796  0.000000 39.79796 39.79796
#> 139 45.87019  3.815730 38.39150 53.34889
#> 140 50.08272  0.000000 50.08272 50.08272
#> 141 36.27753  5.766408 24.97558 47.57948
#> 142 44.64316  0.000000 44.64316 44.64316
#> 143 44.88252  3.945734 37.14902 52.61601
#> 144 39.73529  0.000000 39.73529 39.73529
#> 145 34.06164  0.000000 34.06164 34.06164
#> 146 40.18592  0.000000 40.18592 40.18592
#> 147 41.17584  0.000000 41.17584 41.17584
#> 148 57.76669  0.000000 57.76669 57.76669
#> 149 38.18460  0.000000 38.18460 38.18460
#> 150 38.61735  4.685081 29.43476 47.79994
#> 151 47.19893  0.000000 47.19893 47.19893
#> 152 48.18237 10.071505 28.44258 67.92215
#> 153 37.32785  0.000000 37.32785 37.32785
#> 154 37.89476  4.598487 28.88189 46.90763
#> 155 43.16048  0.000000 43.16048 43.16048
#> 156 41.40349  0.000000 41.40349 41.40349
#> 157 30.15733  0.000000 30.15733 30.15733
#> 158 35.84353  0.000000 35.84353 35.84353
#> 159 40.95250  0.000000 40.95250 40.95250
#> 160 46.76086  9.716748 27.71638 65.80533
#> 161 36.09804  5.601329 25.11964 47.07645
#> 162 41.37928  0.000000 41.37928 41.37928
#> 163 50.17316  0.000000 50.17316 50.17316
#> 164 45.35226  0.000000 45.35226 45.35226
#> 165 39.06491  0.000000 39.06491 39.06491
#> 166 39.39597  4.630383 30.32059 48.47136
#> 167 43.69372  3.877623 36.09372 51.29373
#> 168 42.11960  0.000000 42.11960 42.11960
#> 169 29.81042  0.000000 29.81042 29.81042
#> 170 42.57055  0.000000 42.57055 42.57055
#> 171 47.81652  0.000000 47.81652 47.81652
#> 172 68.06024  0.000000 68.06024 68.06024
#> 173 35.62071  0.000000 35.62071 35.62071
#> 174 40.83933  4.588502 31.84604 49.83263
#> 175 45.83438  3.864369 38.26036 53.40841
#> 176 51.72310  9.839341 32.43834 71.00785
#> 177 33.89134  0.000000 33.89134 33.89134
#> 178 36.42808  0.000000 36.42808 36.42808
#> 179 37.57519  0.000000 37.57519 37.57519
#> 180 58.46873  0.000000 58.46873 58.46873
#> 181 19.54516  0.000000 19.54516 19.54516
#> 182 31.13541  0.000000 31.13541 31.13541
#> 183 40.89955  0.000000 40.89955 40.89955
#> 184 42.08852 10.010124 22.46904 61.70801
#> 185 22.18809  0.000000 22.18809 22.18809
#> 186 41.05857  0.000000 41.05857 41.05857
#> 187 37.32452  0.000000 37.32452 37.32452
#> 188 47.28633 10.270689 27.15614 67.41651
#> 189 35.28933  5.547618 24.41620 46.16247
#> 190 43.12432  0.000000 43.12432 43.12432
#> 191 41.99349  0.000000 41.99349 41.99349
#> 192 49.12250  9.958708 29.60379 68.64121
#> 193 44.03080  0.000000 44.03080 44.03080
#> 194 38.66417  0.000000 38.66417 38.66417
#> 195 53.45993  0.000000 53.45993 53.45993
#> 196 53.14026 10.159131 33.22873 73.05180
#> 197 29.81948  0.000000 29.81948 29.81948
#> 198 30.43859  0.000000 30.43859 30.43859
#> 199 40.18095  0.000000 40.18095 40.18095
#> 200 48.07272  9.949589 28.57188 67.57355
#> 201 26.78578  0.000000 26.78578 26.78578
#> 202 34.55115  0.000000 34.55115 34.55115
#> 203 44.66449  3.946102 36.93027 52.39871
#> 204 40.06421  0.000000 40.06421 40.06421
#> 205 36.66313  5.652236 25.58495 47.74131
#> 206 43.09329  0.000000 43.09329 43.09329
#> 207 46.09670  3.942381 38.36977 53.82362
#> 208 45.71567  0.000000 45.71567 45.71567
#> 209 40.74992  0.000000 40.74992 40.74992
#> 210 44.74635  0.000000 44.74635 44.74635
#> 211 47.51420  3.841475 39.98505 55.04336
#> 212 53.24620  9.856758 33.92731 72.56509
#> 213 40.35635  6.402761 27.80717 52.90553
#> 214 45.16757  5.165126 35.04411 55.29103
#> 215 50.02199  4.019548 42.14382 57.90016
#> 216 56.03985 10.090168 36.26349 75.81622
#> 217 40.14674  0.000000 40.14674 40.14674
#> 218 48.75859  0.000000 48.75859 48.75859
#> 219 46.43462  0.000000 46.43462 46.43462
#> 220 53.05319 10.022308 33.40982 72.69655
#> 221 29.33990  0.000000 29.33990 29.33990
#> 222 36.24424  4.569070 27.28903 45.19946
#> 223 42.39946  3.833426 34.88609 49.91284
#> 224 47.93165  0.000000 47.93165 47.93165
#> 225 36.59443  5.410060 25.99091 47.19795
#> 226 41.11632  0.000000 41.11632 41.11632
#> 227 47.05889  0.000000 47.05889 47.05889
#> 228 52.24599  0.000000 52.24599 52.24599
#> 229 45.12054  5.590055 34.16424 56.07685
#> 230 54.14236  0.000000 54.14236 54.14236
#> 231 50.44618  0.000000 50.44618 50.44618
#> 232 58.53593 10.098456 38.74332 78.32854
#> 233 37.53657  0.000000 37.53657 37.53657
#> 234 44.28282  4.537493 35.38950 53.17614
#> 235 49.45840  0.000000 49.45840 49.45840
#> 236 59.12866  0.000000 59.12866 59.12866
#> 237 40.31268  0.000000 40.31268 40.31268
#> 238 39.66049  0.000000 39.66049 39.66049
#> 239 50.89726  0.000000 50.89726 50.89726
#> 240 56.13116  0.000000 56.13116 56.13116
#> 241 32.82981  0.000000 32.82981 32.82981
#> 242 46.53837  0.000000 46.53837 46.53837
#> 243 44.46016  3.908785 36.79909 52.12124
#> 244 51.81265  0.000000 51.81265 51.81265
#> 245 27.76886  5.724520 16.54901 38.98872
#> 246 29.91939  0.000000 29.91939 29.91939
#> 247 40.70944  3.989268 32.89061 48.52826
#> 248 44.37942 10.024406 24.73194 64.02689
#> 249 43.47695  5.587551 32.52555 54.42835
#> 250 51.05656  0.000000 51.05656 51.05656
#> 251 50.50059  0.000000 50.50059 50.50059
#> 252 64.11388  0.000000 64.11388 64.11388
#> 253 32.21843  0.000000 32.21843 32.21843
#> 254 29.64732  0.000000 29.64732 29.64732
#> 255 42.48707  3.922243 34.79961 50.17452
#> 256 45.09919  0.000000 45.09919 45.09919
#> 257 39.75659  0.000000 39.75659 39.75659
#> 258 37.28894  0.000000 37.28894 37.28894
#> 259 44.80145  0.000000 44.80145 44.80145
#> 260 65.95920  0.000000 65.95920 65.95920
#> 261 33.43439  0.000000 33.43439 33.43439
#> 262 33.57042  0.000000 33.57042 33.57042
#> 263 39.91543  0.000000 39.91543 39.91543
#> 264 49.57098  0.000000 49.57098 49.57098
#> 265 38.91634  0.000000 38.91634 38.91634
#> 266 36.69011  0.000000 36.69011 36.69011
#> 267 45.66665  0.000000 45.66665 45.66665
#> 268 52.07431  0.000000 52.07431 52.07431
#> 269 42.21411  0.000000 42.21411 42.21411
#> 270 45.02901  0.000000 45.02901 45.02901
#> 271 50.22530  3.825954 42.72657 57.72404
#> 272 56.56084  9.797419 37.35825 75.76343
#> 273 30.98338  0.000000 30.98338 30.98338
#> 274 44.72932  0.000000 44.72932 44.72932
#> 275 40.68711  0.000000 40.68711 40.68711
#> 276 34.71530  0.000000 34.71530 34.71530
#> 277 27.30752  0.000000 27.30752 27.30752
#> 278 37.31585  0.000000 37.31585 37.31585
#> 279 42.23592  3.812511 34.76354 49.70830
#> 280 44.83000  0.000000 44.83000 44.83000
#> 281 32.93042  0.000000 32.93042 32.93042
#> 282 44.91911  0.000000 44.91911 44.91911
#> 283 45.68636  0.000000 45.68636 45.68636
#> 284 65.98800  0.000000 65.98800 65.98800
#> 285 46.60130  0.000000 46.60130 46.60130
#> 286 40.89786  0.000000 40.89786 40.89786
#> 287 46.66708  0.000000 46.66708 46.66708
#> 288 53.97575 10.057923 34.26259 73.68892
#> 289 34.51394  6.075404 22.60637 46.42152
#> 290 40.31956  5.056736 30.40854 50.23058
#> 291 43.83270  0.000000 43.83270 43.83270
#> 292 44.11604  0.000000 44.11604 44.11604
#> 293 38.29612  0.000000 38.29612 38.29612
#> 294 42.38074  4.603705 33.35764 51.40383
#> 295 51.38570  0.000000 51.38570 51.38570
#> 296 56.20979  0.000000 56.20979 56.20979
#> 297 35.93809  5.700391 24.76553 47.11065
#> 298 43.45819  0.000000 43.45819 43.45819
#> 299 38.38741  0.000000 38.38741 38.38741
#> 300 56.42818  0.000000 56.42818 56.42818
#> 301 39.05050  0.000000 39.05050 39.05050
#> 302 44.66707  4.560457 35.72874 53.60540
#> 303 49.86836  3.832553 42.35670 57.38003
#> 304 54.09200  0.000000 54.09200 54.09200
#> 305 31.40521  0.000000 31.40521 31.40521
#> 306 46.13330  0.000000 46.13330 46.13330
#> 307 45.29845  0.000000 45.29845 45.29845
#> 308 28.06936  0.000000 28.06936 28.06936
#> 309 39.05960  5.460248 28.35771 49.76149
#> 310 42.50283  0.000000 42.50283 42.50283
#> 311 46.45368  0.000000 46.45368 46.45368
#> 312 64.97366  0.000000 64.97366 64.97366
#> 313 30.67876  6.241155 18.44632 42.91120
#> 314 35.63991  5.096296 25.65135 45.62847
#> 315 41.27878  3.978839 33.48040 49.07716
#> 316 43.97847  0.000000 43.97847 43.97847
#> 317 35.33466  0.000000 35.33466 35.33466
#> 318 39.34378  0.000000 39.34378 39.34378
#> 319 41.27633  0.000000 41.27633 41.27633
#> 320 50.74572  9.757472 31.62142 69.87001
#> 321 34.18429  5.488049 23.42791 44.94067
#> 322 39.83058  0.000000 39.83058 39.83058
#> 323 43.49673  0.000000 43.49673 43.49673
#> 324 44.06114  0.000000 44.06114 44.06114
#> 325 41.43742  0.000000 41.43742 41.43742
#> 326 40.68384  4.594496 31.67880 49.68889
#> 327 46.16954  0.000000 46.16954 46.16954
#> 328 54.24024  0.000000 54.24024 54.24024
#> 329 36.61831  0.000000 36.61831 36.61831
#> 330 42.09272  0.000000 42.09272 42.09272
#> 331 50.69556  0.000000 50.69556 50.69556
#> 332 51.72563  0.000000 51.72563 51.72563
#> 333 32.08271  6.273356 19.78716 44.37826
#> 334 36.39974  5.107527 26.38917 46.41031
#> 335 41.38610  3.998475 33.54923 49.22297
#> 336 53.89947  0.000000 53.89947 53.89947
#> 337 31.94884  6.044153 20.10252 43.79516
#> 338 36.34138  5.044239 26.45485 46.22791
#> 339 39.94420  0.000000 39.94420 39.94420
#> 340 56.42482  0.000000 56.42482 56.42482
#> 341 41.86385  0.000000 41.86385 41.86385
#> 342 34.56420  0.000000 34.56420 34.56420
#> 343 38.68927  0.000000 38.68927 38.68927
#> 344 62.88743  0.000000 62.88743 62.88743
#> 345 28.85343  0.000000 28.85343 28.85343
#> 346 38.89808  4.617791 29.84738 47.94879
#> 347 49.29495  0.000000 49.29495 49.29495
#> 348 48.90884  9.963862 29.38003 68.43765
#> 349 28.74029  0.000000 28.74029 28.74029
#> 350 36.38836  4.589491 27.39312 45.38359
#> 351 43.59994  0.000000 43.59994 43.59994
#> 352 57.38616  0.000000 57.38616 57.38616
#> 353 35.36824  0.000000 35.36824 35.36824
#> 354 43.06110  0.000000 43.06110 43.06110
#> 355 31.27551  0.000000 31.27551 31.27551
#> 356 54.13245  0.000000 54.13245 54.13245
#> 357 25.97050  0.000000 25.97050 25.97050
#> 358 34.04514  4.600649 25.02804 43.06225
#> 359 40.67015  3.877180 33.07102 48.26928
#> 360 44.36054  9.891671 24.97322 63.74786
#> 361 39.69391  6.038756 27.85817 51.52966
#> 362 44.79720  5.040215 34.91856 54.67584
#> 363 51.17493  0.000000 51.17493 51.17493
#> 364 48.44043  0.000000 48.44043 48.44043
#> 365 43.33128  0.000000 43.33128 43.33128
#> 366 46.45918  4.627695 37.38907 55.52930
#> 367 55.93546  0.000000 55.93546 55.93546
#> 368 54.15312  0.000000 54.15312 54.15312
#> 369 33.79699  5.449721 23.11573 44.47824
#> 370 40.60252  0.000000 40.60252 40.60252
#> 371 44.44715  0.000000 44.44715 44.44715
#> 372 40.54161  0.000000 40.54161 40.54161
#> 373 33.95563  0.000000 33.95563 33.95563
#> 374 36.84083  4.557227 27.90882 45.77283
#> 375 43.67802  0.000000 43.67802 43.67802
#> 376 42.76023  0.000000 42.76023 42.76023
#> 377 34.18486  5.579609 23.24903 45.12069
#> 378 42.82678  0.000000 42.82678 42.82678
#> 379 39.59218  0.000000 39.59218 39.59218
#> 380 47.93427 10.008453 28.31806 67.55047
#> 381 33.49216  0.000000 33.49216 33.49216
#> 382 35.39266  0.000000 35.39266 35.39266
#> 383 42.88943  3.826371 35.38988 50.38898
#> 384 42.36266  0.000000 42.36266 42.36266
#> 385 48.54368  0.000000 48.54368 48.54368
#> 386 43.94366  0.000000 43.94366 43.94366
#> 387 50.98218  3.964647 43.21162 58.75275
#> 388 47.91204  0.000000 47.91204 47.91204
#> 389 20.72928  0.000000 20.72928 20.72928
#> 390 28.00599  0.000000 28.00599 28.00599
#> 391 40.19255  0.000000 40.19255 40.19255
#> 392 37.79360  0.000000 37.79360 37.79360
#> 393 32.17343  5.703668 20.99445 43.35242
#> 394 36.75177  0.000000 36.75177 36.75177
#> 395 42.75025  3.947676 35.01295 50.48755
#> 396 47.37158  9.941685 27.88623 66.85692
#> 397 34.59822  0.000000 34.59822 34.59822
#> 398 39.32034  0.000000 39.32034 39.32034
#> 399 40.65702  0.000000 40.65702 40.65702
#> 400 48.52002  9.754107 29.40232 67.63771
#> 401 40.41786  5.599975 29.44211 51.39361
#> 402 43.03255  0.000000 43.03255 43.03255
#> 403 54.65715  0.000000 54.65715 54.65715
#> 404 55.54195 10.016952 35.90908 75.17481
#> 405 35.55742  0.000000 35.55742 35.55742
#> 406 43.70215  0.000000 43.70215 43.70215
#> 407 42.52157  0.000000 42.52157 42.52157
#> 408 54.89337  0.000000 54.89337 54.89337
#> 409 32.03460  0.000000 32.03460 32.03460
#> 410 29.45107  0.000000 29.45107 29.45107
#> 411 45.35138  0.000000 45.35138 45.35138
#> 412 45.33026  9.973320 25.78291 64.87760
#> 413 38.73784  0.000000 38.73784 38.73784
#> 414 39.30063  4.568582 30.34637 48.25488
#> 415 41.42283  0.000000 41.42283 41.42283
#> 416 47.32385  0.000000 47.32385 47.32385
#> 417 40.41284  5.561339 29.51282 51.31287
#> 418 47.55310  0.000000 47.55310 47.55310
#> 419 49.06509  0.000000 49.06509 49.06509
#> 420 53.79511 10.039751 34.11756 73.47266
#> 421 29.22591  0.000000 29.22591 29.22591
#> 422 40.08175  0.000000 40.08175 40.08175
#> 423 45.68142  0.000000 45.68142 45.68142
#> 424 41.47403  0.000000 41.47403 41.47403
#> 425 37.55612  6.137357 25.52712 49.58512
#> 426 41.98123  5.119300 31.94758 52.01487
#> 427 42.51970  0.000000 42.51970 42.51970
#> 428 69.36099  0.000000 69.36099 69.36099
#> 429 42.39760  0.000000 42.39760 42.39760
#> 430 43.72376  0.000000 43.72376 43.72376
#> 431 49.47601  0.000000 49.47601 49.47601
#> 432 51.94188  0.000000 51.94188 51.94188
#> 433 31.77722  5.662285 20.67934 42.87509
#> 434 40.59100  0.000000 40.59100 40.59100
#> 435 39.97833  0.000000 39.97833 39.97833
#> 436 31.69049  0.000000 31.69049 31.69049
#> 437 33.99809  5.526906 23.16556 44.83063
#> 438 37.20517  0.000000 37.20517 37.20517
#> 439 46.28740  0.000000 46.28740 46.28740
#> 440 49.81365  9.900280 30.40946 69.21784
#> 441 35.15913  6.307848 22.79598 47.52229
#> 442 40.63997  5.127962 30.58935 50.69059
#> 443 46.80529  4.022312 38.92171 54.68888
#> 444 41.58720  0.000000 41.58720 41.58720
#> 445 32.17365  0.000000 32.17365 32.17365
#> 446 37.07479  4.557725 28.14182 46.00777
#> 447 40.69375  0.000000 40.69375 40.69375
#> 448 47.52336  9.774417 28.36585 66.68086
#> 449 32.28771  0.000000 32.28771 32.28771
#> 450 41.76205  0.000000 41.76205 41.76205
#> 451 40.06768  0.000000 40.06768 40.06768
#> 452 47.21582  9.811248 27.98613 66.44552
#> 453 29.14213  0.000000 29.14213 29.14213
#> 454 39.50989  0.000000 39.50989 39.50989
#> 455 43.32349  0.000000 43.32349 43.32349
#> 456 47.16756  0.000000 47.16756 47.16756
#> 457 40.93020  0.000000 40.93020 40.93020
#> 458 42.19406  0.000000 42.19406 42.19406
#> 459 41.21057  0.000000 41.21057 41.21057
#> 460 49.76205 10.025584 30.11227 69.41184
#> 461 38.54330  0.000000 38.54330 38.54330
#> 462 41.44104  4.583564 32.45742 50.42466
#> 463 43.96324  0.000000 43.96324 43.96324
#> 464 42.67652  0.000000 42.67652 42.67652
#> 465 22.79584  0.000000 22.79584 22.79584
#> 466 33.91004  4.656178 24.78410 43.03598
#> 467 41.58421  3.943686 33.85472 49.31369
#> 468 44.31106 10.036149 24.64057 63.98155
#> 469 31.43559  0.000000 31.43559 31.43559
#> 470 38.85064  0.000000 38.85064 38.85064
#> 471 48.24288  0.000000 48.24288 48.24288
#> 472 46.15940 10.060249 26.44167 65.87712
#> 473 44.71302  0.000000 44.71302 44.71302
#> 474 51.85370  0.000000 51.85370 51.85370
#> 475 50.77548  3.876699 43.17729 58.37367
#> 476 58.11432  9.964061 38.58512 77.64352
#> 477 30.56757  0.000000 30.56757 30.56757
#> 478 35.65607  4.585596 26.66847 44.64367
#> 479 41.25037  3.848559 33.70733 48.79340
#> 480 45.88736  9.839488 26.60232 65.17240
#> 481 37.37624  6.269796 25.08766 49.66481
#> 482 41.66978  5.112281 31.64989 51.68967
#> 483 45.99979  4.002525 38.15499 53.84460
#> 484 59.90473  0.000000 59.90473 59.90473
#> 485 33.87728  6.368406 21.39543 46.35912
#> 486 37.28988  5.284402 26.93264 47.64711
#> 487 49.76150  0.000000 49.76150 49.76150
#> 488 46.60552 10.547592 25.93262 67.27842
#> 489 47.21985  0.000000 47.21985 47.21985
#> 490 40.34525  0.000000 40.34525 40.34525
#> 491 48.29793  0.000000 48.29793 48.29793
#> 492 54.57153  9.968798 35.03305 74.11002
#> 493 36.13680  5.546742 25.26539 47.00822
#> 494 44.39634  0.000000 44.39634 44.39634
#> 495 41.71421  0.000000 41.71421 41.71421
#> 496 47.37535  0.000000 47.37535 47.37535
#> 497 42.03797  0.000000 42.03797 42.03797
#> 498 37.56100  0.000000 37.56100 37.56100
#> 499 45.11793  0.000000 45.11793 45.11793
#> 500 52.86788  9.813960 33.63287 72.10289
#> 501 34.62530  0.000000 34.62530 34.62530
#> 502 45.28206  0.000000 45.28206 45.28206
#> 503 44.51505  3.960666 36.75228 52.27781
#> 504 63.57761  0.000000 63.57761 63.57761
#> 505 35.80878  0.000000 35.80878 35.80878
#> 506 40.93038  4.560870 31.99124 49.86952
#> 507 45.85156  3.836468 38.33222 53.37090
#> 508 52.67314  0.000000 52.67314 52.67314
#> 509 35.88734  0.000000 35.88734 35.88734
#> 510 38.73222  0.000000 38.73222 38.73222
#> 511 46.70361  0.000000 46.70361 46.70361
#> 512 53.65398  0.000000 53.65398 53.65398
#> 513 36.71543  0.000000 36.71543 36.71543
#> 514 43.89170  4.599427 34.87699 52.90641
#> 515 49.56246  3.870543 41.97633 57.14858
#> 516 54.83060  9.855157 35.51485 74.14635
#> 517 37.85241  5.601026 26.87460 48.83022
#> 518 41.54317  0.000000 41.54317 41.54317
#> 519 51.67909  0.000000 51.67909 51.67909
#> 520 51.76691 10.035614 32.09747 71.43635
#> 521 27.40130  0.000000 27.40130 27.40130
#> 522 30.33517  0.000000 30.33517 30.33517
#> 523 37.73092  0.000000 37.73092 37.73092
#> 524 29.11668  0.000000 29.11668 29.11668
#> 525 30.03596  5.482852 19.28977 40.78215
#> 526 32.08830  0.000000 32.08830 32.08830
#> 527 41.66067  0.000000 41.66067 41.66067
#> 528 53.90815  0.000000 53.90815 53.90815
#> 529 34.02622  5.509356 23.22808 44.82436
#> 530 35.06937  0.000000 35.06937 35.06937
#> 531 47.17615  0.000000 47.17615 47.17615
#> 532 56.49347  0.000000 56.49347 56.49347
#> 533 34.02880  5.484073 23.28021 44.77738
#> 534 38.88006  0.000000 38.88006 38.88006
#> 535 47.54070  0.000000 47.54070 47.54070
#> 536 43.53705  0.000000 43.53705 43.53705
#> 537 31.82054  0.000000 31.82054 31.82054
#> 538 39.62816  0.000000 39.62816 39.62816
#> 539 44.95543  0.000000 44.95543 44.95543
#> 540 21.11543  0.000000 21.11543 21.11543
#> 541 34.74671  0.000000 34.74671 34.74671
#> 542 43.27308  4.599376 34.25847 52.28769
#> 543 49.29538  3.861976 41.72605 56.86472
#> 544 56.69249  0.000000 56.69249 56.69249
#> 545 22.73126  0.000000 22.73126 22.73126
#> 546 32.50075  0.000000 32.50075 32.50075
#> 547 42.37206  0.000000 42.37206 42.37206
#> 548 42.89847  0.000000 42.89847 42.89847
#> 549 55.62582  0.000000 55.62582 55.62582
#> 550 45.38998  0.000000 45.38998 45.38998
#> 551 52.66743  0.000000 52.66743 52.66743
#> 552 56.87348 11.008642 35.29694 78.45003
#> 553 30.66032  6.364585 18.18596 43.13467
#> 554 37.44228  5.246112 27.16009 47.72447
#> 555 34.18931  0.000000 34.18931 34.18931
#> 556 45.59740  0.000000 45.59740 45.59740
#> 557 28.89198  0.000000 28.89198 28.89198
#> 558 38.46147  0.000000 38.46147 38.46147
#> 559 42.42099  3.817484 34.93885 49.90312
#> 560 49.90357  0.000000 49.90357 49.90357
#> 561 39.74586  5.603748 28.76272 50.72900
#> 562 44.14167  0.000000 44.14167 44.14167
#> 563 49.91712  3.931375 42.21177 57.62248
#> 564 55.24278  0.000000 55.24278 55.24278
#> 565 36.24790  6.403322 23.69762 48.79819
#> 566 41.05912  5.166535 30.93290 51.18534
#> 567 45.91354  4.027818 38.01917 53.80792
#> 568 51.93141 10.091591 32.15225 71.71056
#> 569 27.38001  0.000000 27.38001 27.38001
#> 570 33.63251  0.000000 33.63251 33.63251
#> 571 44.70168  3.973455 36.91385 52.48951
#> 572 39.34410  0.000000 39.34410 39.34410
#> 573 26.98575  0.000000 26.98575 26.98575
#> 574 24.04175  0.000000 24.04175 24.04175
#> 575 42.16648  0.000000 42.16648 42.16648
#> 576 44.75380  0.000000 44.75380 44.75380
#> 577 31.55469  0.000000 31.55469 31.55469
#> 578 44.42696  0.000000 44.42696 44.42696
#> 579 44.10343  0.000000 44.10343 44.10343
#> 580 48.06505  9.826979 28.80453 67.32558
#> 581 34.87547  5.478299 24.13820 45.61274
#> 582 37.87445  0.000000 37.87445 37.87445
#> 583 48.31828  0.000000 48.31828 48.31828
#> 584 50.21520  0.000000 50.21520 50.21520
#> 585 41.94615  0.000000 41.94615 41.94615
#> 586 39.62690  0.000000 39.62690 39.62690
#> 587 46.69763  0.000000 46.69763 46.69763
#> 588 49.44653 10.153923 29.54520 69.34785
#> 589 38.01775  5.518603 27.20148 48.83401
#> 590 43.75255  0.000000 43.75255 43.75255
#> 591 47.38873  0.000000 47.38873 47.38873
#> 592 52.70780  9.904625 33.29509 72.12050
#> 593 32.43412  0.000000 32.43412 32.43412
#> 594 43.07163  0.000000 43.07163 43.07163
#> 595 42.99551  0.000000 42.99551 42.99551
#> 596 53.82759  0.000000 53.82759 53.82759
#> 597 39.45747  6.146787 27.40999 51.50495
#> 598 42.93167  5.103661 32.92867 52.93466
#> 599 50.64802  0.000000 50.64802 50.64802
#> 600 63.44051  0.000000 63.44051 63.44051
#> 601 34.48949  0.000000 34.48949 34.48949
#> 602 40.08056  0.000000 40.08056 40.08056
#> 603 41.86656  3.813626 34.39199 49.34113
#> 604 47.46553  0.000000 47.46553 47.46553
#> 605 32.03992  5.718498 20.83187 43.24797
#> 606 37.11697  0.000000 37.11697 37.11697
#> 607 44.12071  4.013915 36.25358 51.98784
#> 608 36.25120  0.000000 36.25120 36.25120
#> 609 29.20171  0.000000 29.20171 29.20171
#> 610 31.53773  0.000000 31.53773 31.53773
#> 611 42.35683  0.000000 42.35683 42.35683
#> 612 64.78352  0.000000 64.78352 64.78352
#> 613 32.72757  0.000000 32.72757 32.72757
#> 614 37.50022  0.000000 37.50022 37.50022
#> 615 42.76167  3.803971 35.30602 50.21732
#> 616 57.03861  0.000000 57.03861 57.03861
#> 617 36.32475  0.000000 36.32475 36.32475
#> 618 40.15241  4.541442 31.25134 49.05347
#> 619 41.46725  0.000000 41.46725 41.46725
#> 620 59.01411  0.000000 59.01411 59.01411
#> 621 30.14970  0.000000 30.14970 30.14970
#> 622 34.91740  0.000000 34.91740 34.91740
#> 623 52.13900  0.000000 52.13900 52.13900
#> 624 58.73839  0.000000 58.73839 58.73839
#> 625 35.83185  0.000000 35.83185 35.83185
#> 626 41.04423  4.567303 32.09248 49.99598
#> 627 45.82688  3.837291 38.30592 53.34783
#> 628 56.41409  0.000000 56.41409 56.41409
#> 629 37.80184  5.436477 27.14654 48.45714
#> 630 43.55593  0.000000 43.55593 43.55593
#> 631 44.26320  0.000000 44.26320 44.26320
#> 632 59.25579  0.000000 59.25579 59.25579
#> 633 28.47314  0.000000 28.47314 28.47314
#> 634 47.47581  0.000000 47.47581 47.47581
#> 635 44.01685  4.029977 36.11824 51.91546
#> 636 49.57489 10.017462 29.94102 69.20875
#> 637 39.38085  5.609521 28.38639 50.37531
#> 638 46.47483  0.000000 46.47483 46.47483
#> 639 51.22677  0.000000 51.22677 51.22677
#> 640 45.82777  0.000000 45.82777 45.82777
#> 641 33.43408  5.705961 22.25060 44.61756
#> 642 39.06783  0.000000 39.06783 39.06783
#> 643 42.98333  3.944848 35.25157 50.71509
#> 644 48.01822  9.951860 28.51294 67.52351
#> 645 29.99542  0.000000 29.99542 29.99542
#> 646 35.69583  4.576264 26.72652 44.66514
#> 647 41.11547  3.845650 33.57814 48.65281
#> 648 54.17796  0.000000 54.17796 54.17796
#> 649 39.32289  5.658601 28.23223 50.41354
#> 650 44.55743  0.000000 44.55743 44.55743
#> 651 47.26282  3.997905 39.42707 55.09857
#> 652 62.59579  0.000000 62.59579 62.59579
#> 653 31.80300  5.419846 21.18030 42.42571
#> 654 35.48396  0.000000 35.48396 35.48396
#> 655 44.07768  0.000000 44.07768 44.07768
#> 656 46.57837  0.000000 46.57837 46.57837
#> 657 47.67979  0.000000 47.67979 47.67979
#> 658 47.73388  4.619675 38.67949 56.78828
#> 659 50.94631  3.901443 43.29962 58.59300
#> 660 58.47218 10.002236 38.86815 78.07620
#> 661 22.15439  0.000000 22.15439 22.15439
#> 662 35.14301  4.710124 25.91134 44.37469
#> 663 42.82000  4.008705 34.96309 50.67692
#> 664 46.24563 10.151562 26.34894 66.14233
#> 665 34.27765  0.000000 34.27765 34.27765
#> 666 36.90059  0.000000 36.90059 36.90059
#> 667 43.05627  3.822490 35.56433 50.54821
#> 668 40.54285  0.000000 40.54285 40.54285
#> 669 29.09494  0.000000 29.09494 29.09494
#> 670 37.21768  0.000000 37.21768 37.21768
#> 671 43.08491  0.000000 43.08491 43.08491
#> 672 46.50100  9.712157 27.46553 65.53648
#> 673 27.12174  0.000000 27.12174 27.12174
#> 674 34.11916  0.000000 34.11916 34.11916
#> 675 45.56320  3.927026 37.86637 53.26003
#> 676 48.00823 10.088000 28.23611 67.78034
#> 677 35.93048  5.570090 25.01330 46.84766
#> 678 40.80230  0.000000 40.80230 40.80230
#> 679 45.89269  0.000000 45.89269 45.89269
#> 680 43.69153  0.000000 43.69153 43.69153
#> 681 28.56569  5.740647 17.31423 39.81715
#> 682 29.22869  0.000000 29.22869 29.22869
#> 683 40.67646  3.947992 32.93854 48.41438
#> 684 55.68362  0.000000 55.68362 55.68362
#> 685 31.90698  0.000000 31.90698 31.90698
#> 686 37.31061  0.000000 37.31061 37.31061
#> 687 40.75546  0.000000 40.75546 40.75546
#> 688 49.50911  9.769986 30.36029 68.65793
#> 689 42.19474  0.000000 42.19474 42.19474
#> 690 44.87228  0.000000 44.87228 44.87228
#> 691 47.55198  0.000000 47.55198 47.55198
#> 692 56.68097  9.748450 37.57436 75.78758
#> 693 50.62894  0.000000 50.62894 50.62894
#> 694 45.47551  0.000000 45.47551 45.47551
#> 695 48.62168  0.000000 48.62168 48.62168
#> 696 56.58212 10.250903 36.49072 76.67352
#> 697 29.66493  0.000000 29.66493 29.66493
#> 698 34.57406  0.000000 34.57406 34.57406
#> 699 42.45295  3.838414 34.92980 49.97610
#> 700 38.11676  0.000000 38.11676 38.11676
#> 701 33.77204  0.000000 33.77204 33.77204
#> 702 34.26148  0.000000 34.26148 34.26148
#> 703 45.29511  3.856331 37.73684 52.85338
#> 704 58.81037  0.000000 58.81037 58.81037
#> 705 31.46668  6.171992 19.36980 43.56357
#> 706 36.78469  5.102799 26.78339 46.78600
#> 707 39.88119  0.000000 39.88119 39.88119
#> 708 47.32261 10.042694 27.63930 67.00593
#> 709 31.62708  0.000000 31.62708 31.62708
#> 710 37.03239  4.558330 28.09823 45.96655
#> 711 42.69162  3.822689 35.19928 50.18395
#> 712 48.22049  0.000000 48.22049 48.22049
#> 713 42.58829  0.000000 42.58829 42.58829
#> 714 45.80410  4.528487 36.92843 54.67977
#> 715 49.33262  0.000000 49.33262 49.33262
#> 716 53.74331  0.000000 53.74331 53.74331
#> 717 29.71857  0.000000 29.71857 29.71857
#> 718 30.45651  0.000000 30.45651 30.45651
#> 719 38.29800  0.000000 38.29800 38.29800
#> 720 45.15328  9.780586 25.98369 64.32288
#> 721 36.81040  0.000000 36.81040 36.81040
#> 722 37.61606  4.597865 28.60441 46.62771
#> 723 42.35045  0.000000 42.35045 42.35045
#> 724 39.39860  0.000000 39.39860 39.39860
#> 725 36.09876  6.070997 24.19982 47.99769
#> 726 40.94066  5.065347 31.01276 50.86855
#> 727 49.73629  0.000000 49.73629 49.73629
#> 728 41.58082  0.000000 41.58082 41.58082
#> 729 43.58901  0.000000 43.58901 43.58901
#> 730 40.16762  0.000000 40.16762 40.16762
#> 731 46.70338  3.906495 39.04680 54.35997
#> 732 53.94830  9.937606 34.47095 73.42566
#> 733 39.60913  5.721629 28.39494 50.82331
#> 734 41.08206  0.000000 41.08206 41.08206
#> 735 49.65683  3.950191 41.91460 57.39907
#> 736 69.37409  0.000000 69.37409 69.37409
#> 737 34.12096  5.465526 23.40873 44.83320
#> 738 41.27625  0.000000 41.27625 41.27625
#> 739 44.76138  0.000000 44.76138 44.76138
#> 740 39.69815  0.000000 39.69815 39.69815
#> 741 38.44296  0.000000 38.44296 38.44296
#> 742 48.20586  0.000000 48.20586 48.20586
#> 743 47.54082  3.836528 40.02136 55.06028
#> 744 35.50735  0.000000 35.50735 35.50735
#> 745 32.08153  0.000000 32.08153 32.08153
#> 746 37.16398  4.584361 28.17880 46.14917
#> 747 42.75619  3.848890 35.21250 50.29988
#> 748 47.39510  9.837599 28.11376 66.67644
#> 749 44.69256  0.000000 44.69256 44.69256
#> 750 41.45664  4.644804 32.35300 50.56029
#> 751 42.18689  0.000000 42.18689 42.18689
#> 752 51.68534 10.112830 31.86456 71.50612
#> 753 37.01741  0.000000 37.01741 37.01741
#> 754 38.26920  0.000000 38.26920 38.26920
#> 755 49.28806  0.000000 49.28806 49.28806
#> 756 50.67485  9.886123 31.29841 70.05130
#> 757 40.45953  0.000000 40.45953 40.45953
#> 758 45.10337  0.000000 45.10337 45.10337
#> 759 45.58250  0.000000 45.58250 45.58250
#> 760 62.96989  0.000000 62.96989 62.96989
#> 761 30.78252  0.000000 30.78252 30.78252
#> 762 41.58139  4.622139 32.52216 50.64061
#> 763 48.87398  3.916484 41.19781 56.55014
#> 764 44.69667  0.000000 44.69667 44.69667
#> 765 32.72491  0.000000 32.72491 32.72491
#> 766 45.78702  0.000000 45.78702 45.78702
#> 767 48.74886  0.000000 48.74886 48.74886
#> 768 84.08449  0.000000 84.08449 84.08449
#> 769 28.60809  5.578876 17.67369 39.54249
#> 770 30.19495  0.000000 30.19495 30.19495
#> 771 36.78573  0.000000 36.78573 36.78573
#> 772 61.03588  0.000000 61.03588 61.03588
#> 773 20.36749  0.000000 20.36749 20.36749
#> 774 35.22480  0.000000 35.22480 35.22480
#> 775 37.42847  0.000000 37.42847 37.42847
#> 776 30.20501  0.000000 30.20501 30.20501
#> 777 41.72819  5.575619 30.80018 52.65620
#> 778 49.12862  0.000000 49.12862 49.12862
#> 779 47.31234  0.000000 47.31234 47.31234
#> 780 57.08286  9.965479 37.55088 76.61483
#> 781 19.28388  0.000000 19.28388 19.28388
#> 782 30.00682  0.000000 30.00682 30.00682
#> 783 39.69711  3.932195 31.99015 47.40407
#> 784 49.21768  0.000000 49.21768 49.21768
#> 785 31.42637  6.268065 19.14119 43.71155
#> 786 36.73485  5.104066 26.73106 46.73863
#> 787 42.72556  4.001168 34.88342 50.56771
#> 788 40.13353  0.000000 40.13353 40.13353
#> 789 42.34534  0.000000 42.34534 42.34534
#> 790 52.32575  0.000000 52.32575 52.32575
#> 791 46.92223  4.082404 38.92087 54.92360
#> 792 69.26254  0.000000 69.26254 69.26254
#> 793 40.35635  6.402761 27.80717 52.90553
#> 794 45.16757  5.165126 35.04411 55.29103
#> 795 50.02199  4.019548 42.14382 57.90016
#> 796 56.03985 10.090168 36.26349 75.81622
#> 797 35.70341  0.000000 35.70341 35.70341
#> 798 41.64454  0.000000 41.64454 41.64454
#> 799 43.29513  3.821525 35.80508 50.78518
#> 800 54.25081  0.000000 54.25081 54.25081

The result is now a matrix, because that is what the predict() method returns for mmrm objects. Note that this cannot be changed to return a tibble at the moment.

Similarly, we can also use the augment() method to add predicted values to a new data set:

augment(model, new_data = fev_data) |>
  select(USUBJID, AVISIT, .resid, .pred)
#> # A tibble: 800 × 4
#>    USUBJID AVISIT .resid .pred
#>    <fct>   <fct>   <dbl> <dbl>
#>  1 PT1     VIS1       NA  32.5
#>  2 PT1     VIS2        0  40.0
#>  3 PT1     VIS3       NA  45.7
#>  4 PT1     VIS4        0  20.5
#>  5 PT2     VIS1       NA  28.0
#>  6 PT2     VIS2        0  31.5
#>  7 PT2     VIS3        0  36.9
#>  8 PT2     VIS4        0  48.8
#>  9 PT3     VIS1       NA  30.7
#> 10 PT3     VIS2        0  36.0
#> # ℹ 790 more rows

Note that here we cannot customize the predict options as this is currently not supported by the augment() method in parsnip.

Using mmrm in workflows

We can leverage the workflows package in order to fit the same model.

  • First we define the specification for linear regression with the mmrm engine.
  • Second we define the workflow, by defining the outcome and predictors that will be used in the formula. We then add the model using the formula.
  • Lastly, we fit the model
mmrm_spec <- linear_reg() |>
  set_engine("mmrm", method = "Satterthwaite")

mmrm_wflow <- workflow() |>
  add_variables(outcomes = FEV1, predictors = c(RACE, ARMCD, AVISIT, USUBJID)) |>
  add_model(mmrm_spec, formula = FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID))

mmrm_wflow |>
  fit(data = fev_data)
#> ══ Workflow [trained] ══════════════════════════════════════════════════════════
#> Preprocessor: Variables
#> Model: linear_reg()
#> 
#> ── Preprocessor ────────────────────────────────────────────────────────────────
#> Outcomes: FEV1
#> Predictors: c(RACE, ARMCD, AVISIT, USUBJID)
#> 
#> ── Model ───────────────────────────────────────────────────────────────────────
#> mmrm fit
#> 
#> Formula:     FEV1 ~ RACE + ARMCD * AVISIT + us(AVISIT | USUBJID)
#> Data:        data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Weights:     weights
#> Covariance:  unstructured (10 variance parameters)
#> Inference:   REML
#> Deviance:    3387.373
#> 
#> Coefficients: 
#>                   (Intercept) RACEBlack or African American 
#>                   30.96769899                    1.50464863 
#>                     RACEWhite                      ARMCDTRT 
#>                    5.61309565                    3.77555734 
#>                    AVISITVIS2                    AVISITVIS3 
#>                    4.82858803                   10.33317002 
#>                    AVISITVIS4           ARMCDTRT:AVISITVIS2 
#>                   15.05255715                   -0.01737409 
#>           ARMCDTRT:AVISITVIS3           ARMCDTRT:AVISITVIS4 
#>                   -0.66753189                    0.63094392 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message: convergence: rel_reduction_of_f <= factr*epsmch

We can separate out the data preparation step from the modeling step using the recipes package. Here we are converting the ARMCD variable into a dummy variable and creating an interaction term with the new dummy variable and each visit.

mmrm_recipe <- recipe(FEV1 ~ ., data = fev_data) |>
  step_dummy(ARMCD) |>
  step_interact(terms = ~ starts_with("ARMCD"):AVISIT)

Using prep() and juice() we can see what the transformed data that will be used in the model fit looks like.

mmrm_recipe |>
  prep() |>
  juice()
#> # A tibble: 800 × 13
#>    USUBJID AVISIT RACE       SEX   FEV1_BL WEIGHT VISITN VISITN2  FEV1 ARMCD_TRT
#>    <fct>   <fct>  <fct>      <fct>   <dbl>  <dbl>  <int>   <dbl> <dbl>     <dbl>
#>  1 PT1     VIS1   Black or … Fema…    25.3  0.677      1  -0.626  NA           1
#>  2 PT1     VIS2   Black or … Fema…    25.3  0.801      2   0.184  40.0         1
#>  3 PT1     VIS3   Black or … Fema…    25.3  0.709      3  -0.836  NA           1
#>  4 PT1     VIS4   Black or … Fema…    25.3  0.809      4   1.60   20.5         1
#>  5 PT2     VIS1   Asian      Male     45.0  0.465      1   0.330  NA           0
#>  6 PT2     VIS2   Asian      Male     45.0  0.233      2  -0.820  31.5         0
#>  7 PT2     VIS3   Asian      Male     45.0  0.360      3   0.487  36.9         0
#>  8 PT2     VIS4   Asian      Male     45.0  0.507      4   0.738  48.8         0
#>  9 PT3     VIS1   Black or … Fema…    43.5  0.682      1   0.576  NA           0
#> 10 PT3     VIS2   Black or … Fema…    43.5  0.892      2  -0.305  36.0         0
#> # ℹ 790 more rows
#> # ℹ 3 more variables: ARMCD_TRT_x_AVISITVIS2 <dbl>,
#> #   ARMCD_TRT_x_AVISITVIS3 <dbl>, ARMCD_TRT_x_AVISITVIS4 <dbl>

We can pass the covariance structure as well in the set_engine() definition. This allows for more flexibility on presetting different covariance structures in the pipeline while keeping the data preparation step independent.

mmrm_spec_with_cov <- linear_reg() |>
  set_engine(
    "mmrm",
    method = "Satterthwaite",
    covariance = as.cov_struct(~ us(AVISIT | USUBJID))
  )

We combine these steps into a workflow:

(mmrm_wflow_nocov <- workflow() |>
  add_model(mmrm_spec_with_cov, formula = FEV1 ~ SEX) |>
  add_recipe(mmrm_recipe))
#> ══ Workflow ════════════════════════════════════════════════════════════════════
#> Preprocessor: Recipe
#> Model: linear_reg()
#> 
#> ── Preprocessor ────────────────────────────────────────────────────────────────
#> 2 Recipe Steps
#> 
#> • step_dummy()
#> • step_interact()
#> 
#> ── Model ───────────────────────────────────────────────────────────────────────
#> Linear Regression Model Specification (regression)
#> 
#> Engine-Specific Arguments:
#>   method = Satterthwaite
#>   covariance = as.cov_struct(~us(AVISIT | USUBJID))
#> 
#> Computational engine: mmrm

Last step is to fit the data with the workflow object

(fit_tidy <- fit(mmrm_wflow_nocov, data = fev_data))
#> ══ Workflow [trained] ══════════════════════════════════════════════════════════
#> Preprocessor: Recipe
#> Model: linear_reg()
#> 
#> ── Preprocessor ────────────────────────────────────────────────────────────────
#> 2 Recipe Steps
#> 
#> • step_dummy()
#> • step_interact()
#> 
#> ── Model ───────────────────────────────────────────────────────────────────────
#> mmrm fit
#> 
#> Formula:     FEV1 ~ SEX
#> Data:        data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Weights:     weights
#> Covariance:  unstructured (10 variance parameters)
#> Inference:   REML
#> Deviance:    3699.803
#> 
#> Coefficients: 
#> (Intercept)   SEXFemale 
#> 42.80540973  0.04513432 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message: convergence: rel_reduction_of_f <= factr*epsmch

To retrieve the fit object from within the workflow object run the following

fit_tidy |>
  hardhat::extract_fit_engine()
#> mmrm fit
#> 
#> Formula:     FEV1 ~ SEX
#> Data:        data (used 537 observations from 197 subjects with maximum 4 
#> timepoints)
#> Weights:     weights
#> Covariance:  unstructured (10 variance parameters)
#> Inference:   REML
#> Deviance:    3699.803
#> 
#> Coefficients: 
#> (Intercept)   SEXFemale 
#> 42.80540973  0.04513432 
#> 
#> Model Inference Optimization:
#> Converged with code 0 and message: convergence: rel_reduction_of_f <= factr*epsmch

Acknowledgments

The mmrm package is based on previous work internal in Roche, namely the tern and tern.mmrm packages which were based on lme4. The work done in the rbmi package has been important since it used glmmTMB for fitting MMRMs.

We would like to thank Ben Bolker from the glmmTMB team for multiple discussions when we tried to get the Satterthwaite degrees of freedom implemented with glmmTMB (see https://github.com/glmmTMB/glmmTMB/blob/satterthwaite_df/glmmTMB/vignettes/satterthwaite_unstructured_example2.Rmd). Also Ben helped us significantly with an example showing how to use TMB for a random effect vector (https://github.com/bbolker/tmb-case-studies/tree/master/vectorMixed).

References