suppressPackageStartupMessages(library(tidyverse))
library(targets)
library(DT)
knitr::opts_knit$set(root.dir = "../../")
Maximum VIF for final model.
df_cv_preds_and_coefs <- tar_read(df_cv_preds_and_coefs)
df_coefs <- df_cv_preds_and_coefs %>%
select(year_start_act, category_id, pred) %>%
mutate(coefs = map(pred, "coefs")) %>%
select(- pred) %>%
unnest(coefs) %>%
unnest(coefs)
df_coefs %>%
filter(year_start_act == 2019) %>%
group_by(category_id) %>%
summarise(max_vif = max(vif, na.rm = TRUE)) %>%
knitr::kable()
category_id | max_vif |
---|---|
cnsn | 1.253876 |
dtin | 1.105846 |
ptpe | 1.048755 |
sfty | 1.966747 |
spno | 1.045658 |
df_perf <- tar_read(df_perf)
AUC and Brier were calculated for each test set and then the mean and standard error was calculated.
df_perf %>%
filter(.metric == "roc_auc") %>%
knitr::kable(digits = 2)
category_id | .metric | mean | sd | n |
---|---|---|---|---|
cnsn | roc_auc | 0.61 | 0.15 | 8 |
dtin | roc_auc | 0.60 | 0.10 | 8 |
ptpe | roc_auc | 0.59 | 0.06 | 8 |
sfty | roc_auc | 0.63 | 0.07 | 8 |
spno | roc_auc | 0.53 | 0.06 | 8 |
df_perf %>%
filter(.metric == "brier") %>%
knitr::kable(digits = 2)
category_id | .metric | mean | sd | n |
---|---|---|---|---|
cnsn | brier | 0.24 | 0.03 | 8 |
dtin | brier | 0.19 | 0.04 | 8 |
ptpe | brier | 0.23 | 0.04 | 8 |
sfty | brier | 0.25 | 0.03 | 8 |
spno | brier | 0.24 | 0.03 | 8 |
prop.test()
was used for calculating confidence intervals.tar_read(df_calib) %>%
select(- plot_data) %>%
mutate(delta = upper - lower) %>%
select(category_id, lower, base_rate, upper, delta, intercept, slope) %>%
knitr::kable(digits = 3)
category_id | lower | base_rate | upper | delta | intercept | slope |
---|---|---|---|---|---|---|
cnsn | 0.338 | 0.455 | 0.605 | 0.267 | 0.171 | 0.603 |
dtin | 0.489 | 0.726 | 0.854 | 0.365 | 0.374 | 0.506 |
ptpe | 0.537 | 0.691 | 0.786 | 0.249 | 0.482 | 0.304 |
sfty | 0.261 | 0.474 | 0.694 | 0.434 | 0.193 | 0.577 |
spno | 0.628 | 0.637 | 0.654 | 0.026 | 0.654 | -0.026 |
tar_read(p_calib)