G-computation for a Binary Outcome at Multiple Visits
Source:R/analysis_utils.R
gcomp_responder_multi.Rd
Applies gcomp_responder()
separately for each unique visit in the data.
Arguments
- data
A data.frame containing multiple visits.
- vars
A list specifying analysis variables.
- reference_levels
Optional reference level for the treatment variable.
- ...
Additional arguments passed to
gcomp_responder()
.
Examples
# \donttest{
library(dplyr)
library(rbmi)
library(rbmiUtils)
data("ADMI")
ADMI <- ADMI |>
mutate(
TRT = factor(TRT, levels = c("Placebo", "Drug A")),
STRATA = factor(STRATA),
REGION = factor(REGION)
)
# Note: method must match the original used for imputation
method <- method_bayes(
n_samples = 100,
control = control_bayes(warmup = 20, thin = 2)
)
vars_binary <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CRIT1FLN",
covariates = c("BASE", "STRATA", "REGION")
)
ana_obj_prop <- analyse_mi_data(
data = ADMI,
vars = vars_binary,
method = method,
fun = gcomp_responder_multi,
reference_levels = "Placebo",
contrast = "diff",
var_method = "Ge",
type = "HC0"
)
pool(ana_obj_prop)
#>
#> Pool Object
#> -----------
#> Number of Results Combined: 100
#> Method: rubin
#> Confidence Level: 0.95
#> Alternative: two.sided
#>
#> Results:
#>
#> ===================================================================
#> parameter est se lci uci pval
#> -------------------------------------------------------------------
#> trt_Drug A-Placebo_Week 24 -0.031 0.012 -0.053 -0.008 0.007
#> lsm_Drug A_Week 24 0 0.001 -0.001 0.002 0.921
#> lsm_Placebo_Week 24 0.031 0.011 0.008 0.053 0.007
#> trt_Drug A-Placebo_Week 48 -0.096 0.021 -0.137 -0.054 <0.001
#> lsm_Drug A_Week 48 0.007 0.005 -0.003 0.017 0.15
#> lsm_Placebo_Week 48 0.103 0.021 0.063 0.143 <0.001
#> -------------------------------------------------------------------
#>
# }