Provides a detailed summary of an analysis object from analyse_mi_data().
Usage
# S3 method for class 'analysis'
summary(object, ...)Examples
# \donttest{
library(rbmi)
library(rbmiUtils)
data("ADMI")
# Create analysis object
vars <- set_vars(
subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA")
)
method <- method_bayes(n_samples = 10, control = control_bayes(warmup = 10))
ana_obj <- analyse_mi_data(ADMI, vars, method, fun = function(d, v, ...) 1)
#> Warning: Data contains 100 imputations but method expects 10. Using first 10 imputations.
summary(ana_obj)
#> Analysis Object Summary
#> =======================
#>
#> Imputations:
#> Number of imputations: 10
#>
#> Analysis:
#> Function: <Anonymous Function>
#> Delta adjustment: None
#>
#> Method:
#> Type: bayes
#> Samples: 10
#>
#> Pooling:
#> Method: rubin
#>
#> Next steps:
#> 1. Pool results: pool_obj <- rbmi::pool(analysis_obj)
#> 2. Tidy results: tidy_df <- tidy_pool_obj(pool_obj)
# }