Package index
-
applyQtl()
- Filter a Tibble to Obtain Values Outside a QTL
-
berrySubject
- Data derived and adapted from Berry et al (2011) pp 52-63
-
berrySummary
- Data adapted from Berry et al (2011) pp 52-63
-
cavalryDeaths
- The Bortkiewicz cavalry dataset
-
createObservedMinusExpectedPlot()
- Create an Observed Minus Expected Plot
-
createObservedMinusExpectedTable()
- Create a data.frame containing the results of an Observed - Expected Analysis
-
createObservedOverExpectedPlot()
- Create an Observed Over Expected Plot
-
createObservedOverExpectedTable()
- Create an Observed Over Expected Grid Using the work of Katz et al (1978) calculate acceptable limits for the ratio of two binomial proportions. The Type 1 error rate can be specified, and the limits can be one- or two-sided.
-
createQtlBubblePlot()
- Create a QTL bubble plot
-
createQtlPlot()
- Summary Plot of Observed Event Rates/Proportions
-
.assertColumnDoesNotExist()
- Throw an exception of the given column DOES exist in the given data.frame
-
.assertColumnExists()
- Throw an exception of the given column DOES NOT exist in the given data.frame
-
.autorunJagsAndCaptureOutput()
- Fit an MCMC model to a dataset, capture and log JAGS messages
-
.columnExists()
- Determine if a column, passed using NSE, exists in a data.frame
-
.createBinomialInit()
- Create a JAGS inits suitable for use with run.jags and autorun.jags
-
.createPoissonInit()
- Create a JAGS inits suitable for use with run.jags and autorun.jags
-
.ensureLimitsAreNamed()
- Ensures that a vector or scalar is named according to standard rules
-
evaluateCustomQTL()
- Apply an arbitrary QTL rule to a tibble
-
evaluatePointEstimateQTL()
- Compares a scalar statistic derived from the posterior with one or more fixed values
-
evaluateProbabilityInRangeQTL()
- Evaluates a QTL based on prob(study-level metric lies within a range)
-
evaluateSiteMetricQTL()
- Evaluates a QTL based on the proportion of site level KRIs within a range
-
fitBayesBinomialModel()
- Fit an MCMC Binomial Model to site-specific Counts
-
fitBayesPoissonModel()
- Fit an MCMC Poisson Model to Site-specific Event Rates
-
getModelString()
- Function to obtain the string that defines the default JAGS model for each data type
-
shadeRange()
- Shade Areas Under The Curve
-
siteRates
- A dataset of event rates
-
vaLung
- The Kalbfleisch and Prentice (1980) VA lung dataset.