Calculate multiplicity adjusted p-values for a maximum contrast test corresponding to a set of contrasts and given a
set of observed test statistics. This function is exported as it may be a useful building block and used in more
complex testing situations that are not covered by MCTtest()
. Most users probably don't need to use this
function.
Usage
MCTpval(
contMat,
corMat,
df,
tStat,
alternative = c("one.sided", "two.sided"),
control = mvtnorm.control()
)
Arguments
- contMat
Contrast matrix to use. The individual contrasts should be saved in the columns of the matrix
- corMat
Correlation matrix of contrasts
- df
Degrees of freedom to use for calculation.
- tStat
Vector of contrast test statistics
- alternative
Character determining the alternative for the multiple contrast trend test.
- control
A list specifying additional control parameters for the qmvt and pmvt calls in the code, see also
mvtnorm.control()
for details.
References
Pinheiro J, Bornkamp B, Bretz F (2006). “Design and Analysis of Dose Finding Studies Combining Multiple Comparisons and Modeling Procedures.” Journal of Biopharmaceutical Statistics, 16, 639-656. doi:10.1080/10543400600860428 .
Examples
data(biom)
## define shapes for which to calculate optimal contrasts
modlist <- Mods(emax = 0.05, linear = NULL, logistic = c(0.5, 0.1),
linInt = c(0, 1, 1, 1), doses = c(0, 0.05, 0.2, 0.6, 1))
contMat <- optContr(modlist, w=1)$contMat
## calculate inputs needed for MCTpval
fit <- lm(resp~factor(dose)-1, data=biom)
est <- coef(fit)
vc <- vcov(fit)
ct <- as.vector(est %*% contMat)
covMat <- t(contMat) %*% vc %*% contMat
den <- sqrt(diag(covMat))
tStat <- ct/den
corMat <- cov2cor(t(contMat) %*% vc %*% contMat)
MCTpval(contMat, corMat, df=100-5, tStat)
#> [1] 0.001566885 0.004235790 0.007480728 0.001206962
## compare to
test <- MCTtest(dose, resp, biom, models=modlist)
attr(test$tStat, "pVal")
#> [1] 0.001572649 0.004888976 0.007579961 0.001275986