Skip to contents

The Mods functions allows to define a set of dose-response models. The function is used as input object for a number of other different functions.

Usage

Mods(
  ...,
  doses,
  placEff = 0,
  maxEff,
  direction = c("increasing", "decreasing"),
  addArgs = NULL,
  fullMod = FALSE
)

getResp(fmodels, doses)

plotMods(
  ModsObj,
  nPoints = 200,
  superpose = FALSE,
  xlab = "Dose",
  ylab = "Model means",
  modNams = NULL,
  trafo = function(x) x
)

# S3 method for class 'Mods'
plot(
  x,
  nPoints = 200,
  superpose = FALSE,
  xlab = "Dose",
  ylab = "Model means",
  modNams = NULL,
  plotTD = FALSE,
  Delta,
  ...
)

Arguments

...

In function Mods:
Dose-response model names with parameter values specifying the guesstimates for the \(\theta_2\) parameters. See drmodels for a complete list of dose-response models implemented. See below for an example specification.

In function plot.Mods:
Additional arguments to the xyplot call.

doses

Dose levels to be used, this needs to include placebo.

placEff, maxEff

Specify used placebo effect and the maximum effect over placebo. Either a numeric vector of the same size as the number of candidate models or of length one.
When these parameters are not specified placEff = 0 is assumed, for maxEff = 1 is assumed, if direction = "increasing" and maxEff = -1 is assumed, for direction = "decreasing".

direction

Character determining whether the beneficial direction is increasing or decreasing with increasing dose levels. This argument is ignored if maxEff is specified.

addArgs

List containing two entries named "scal" and "off" for the "betaMod" and "linlog". When addArgs is NULL the following defaults are used list(scal = 1.2*max(doses), off = 0.01*max(doses), nodes = doses).

fullMod

Logical determining, whether the model parameters specified in the Mods function (via the ... argument) should be interpreted as standardized or the full model parameters.

fmodels

An object of class Mods

ModsObj

For function plotMods the ModsObj should contain an object of class Mods.

nPoints

Number of points for plotting

superpose

Logical determining, whether model plots should be superposed

xlab, ylab

Label for y-axis and x-axis.

modNams

When modNams == NULL, the names for the panels are determined by the underlying model functions, otherwise the contents of modNams are used.

trafo

For function plotMods there is the option to plot the candidate model set on a transformed scale (e.g. probability scale if the candidate models are formulated on log-odds scale). The default for trafo is the identity function.

x

Object of class Mods with type Mods

plotTD

plotTD is a logical determining, whether the TD should be plotted. Delta is the target effect to estimate for the TD.

Delta

Delta: The target effect size use for the target dose (TD) (Delta should be > 0).

Value

Returns an object of class "Mods". The object contains the specified model parameter values and the derived linear parameters (based on "placEff" and "maxEff") in a list.

Details

The dose-response models used in this package (see drmodels for details) are of form

$$f(d) = \theta_0+\theta_1 f^0(d,\theta_2)$$

where the parameter \(\theta_2\) is the only non-linear parameter and can be one- or two-dimensional, depending on the used model.

One needs to hand over the effect at placebo and the maximum effect in the dose range, from which \(\theta_0,\theta_1\) are then back-calculated, the output object is of class "Mods". This object can form the input for other functions to extract the mean response (getResp) or target doses (TD and ED) corresponding to the models. It is also needed as input to the functions powMCT, optDesign

Some models, for example the beta model (scal) and the linlog model (off) have parameters that are not estimated from the data, they need to be specified via the addArgs argument.

The default plot method for Mods objects is based on a plot using the lattice package for backward compatibility. The function plotMods function implements a plot using the ggplot2 package.

NOTE: If a decreasing effect is beneficial for the considered response variable it needs to specified here, either by using direction = "decreasing" or by specifying a negative "maxEff" argument.

References

Pinheiro, J. C., Bornkamp, B., and Bretz, F. (2006). Design and analysis of dose finding studies combining multiple comparisons and modeling procedures, Journal of Biopharmaceutical Statistics, 16, 639–656

See also

Author

Bjoern Bornkamp

Examples


## Example on how to specify candidate models

## Suppose one would like to use the following models with the specified
## guesstimates for theta2, in a situation where the doses to be used are
## 0, 0.05, 0.2, 0.6, 1

## Model            guesstimate(s) for theta2 parameter(s) (name)
## linear           -
## linear in log    -
## Emax             0.05 (ED50)
## Emax             0.3 (ED50)
## exponential      0.7 (delta)
## quadratic       -0.85 (delta)
## logistic         0.4  0.09 (ED50, delta)
## logistic         0.3  0.1 (ED50, delta)
## betaMod          0.3  1.3 (delta1, delta2)
## sigmoid Emax     0.5  2 (ED50, h)
## linInt           0.5 0.75 1 1 (perc of max-effect at doses)
## linInt           0.5 1 0.7 0.5 (perc of max-effect at doses)

## for the linInt model one specifies the effect over placebo for
## each active dose.
## The fixed "scal" parameter of the betaMod is set to 1.2
## The fixed "off"  parameter of the linlog is set to 0.1
## These (standardized) candidate models can be specified as follows

models <- Mods(linear = NULL, linlog = NULL, emax = c(0.05, 0.3),
               exponential = 0.7, quadratic = -0.85,
               logistic = rbind(c(0.4, 0.09), c(0.3, 0.1)),
               betaMod = c(0.3, 1.3), sigEmax = c(0.5, 2),
               linInt = rbind(c(0.5, 0.75, 1, 1), c(0.5, 1, 0.7, 0.5)),
               doses = c(0, 0.05, 0.2, 0.6, 1),
               addArgs = list(scal=1.2, off=0.1))
## "models" now contains the candidate model set, as placEff, maxEff and
## direction were not specified a placebo effect of 0 and an effect of 1
## is assumed

## display of specified candidate set using default plot (based on lattice)
plot(models)

## display using ggplot2
plotMods(models)


## example for creating a candidate set with decreasing response
doses <- c(0, 10, 25, 50, 100, 150)
fmodels <- Mods(linear = NULL, emax = 25,
                   logistic = c(50, 10.88111), exponential = 85,
                   betaMod = rbind(c(0.33, 2.31), c(1.39, 1.39)),
                   linInt = rbind(c(0, 1, 1, 1, 1),
                                  c(0, 0, 1, 1, 0.8)),
                   doses=doses, placEff = 0.5, maxEff = -0.4,
                   addArgs=list(scal=200))
plot(fmodels)

plotMods(fmodels)

## some customizations (different model names, symbols, line-width)
plot(fmodels, lwd = 3, pch = 3, cex=1.2, col="red",
     modNams = paste("mod", 1:8, sep="-"))


## for a full-model object one can calculate the responses
## in a matrix
getResp(fmodels, doses=c(0, 20, 100, 150))
#>        linear      emax  logistic exponential  betaMod1  betaMod2   linInt1
#> 0   0.5000000 0.5000000 0.5000000   0.5000000 0.5000000 0.5000000 0.5000000
#> 20  0.4466667 0.2925926 0.4799218   0.4780753 0.1034104 0.4033236 0.2333333
#> 100 0.2333333 0.1266667 0.1039996   0.3146301 0.3264910 0.1000000 0.1000000
#> 150 0.1000000 0.1000000 0.1000000   0.1000000 0.4600007 0.2318393 0.1000000
#>     linInt2
#> 0      0.50
#> 20     0.50
#> 100    0.10
#> 150    0.18
#> attr(,"parList")
#> attr(,"parList")$linear
#>           e0        delta 
#>  0.500000000 -0.002666667 
#> 
#> attr(,"parList")$emax
#>         e0       eMax       ed50 
#>  0.5000000 -0.4666667 25.0000000 
#> 
#> attr(,"parList")$logistic
#>         e0       eMax       ed50      delta 
#>  0.5040408 -0.4040820 50.0000000 10.8811100 
#> 
#> attr(,"parList")$exponential
#>          e0          e1       delta 
#>  0.50000000 -0.08264711 85.00000000 
#> 
#> attr(,"parList")$betaMod1
#>     e0   eMax delta1 delta2   scal 
#>   0.50  -0.40   0.33   2.31 200.00 
#> 
#> attr(,"parList")$betaMod2
#>     e0   eMax delta1 delta2   scal 
#>   0.50  -0.40   1.39   1.39 200.00 
#> 
#> attr(,"parList")$linInt1
#>   d0  d10  d25  d50 d100 d150 
#>  0.5  0.5  0.1  0.1  0.1  0.1 
#> 
#> attr(,"parList")$linInt2
#>   d0  d10  d25  d50 d100 d150 
#> 0.50 0.50 0.50 0.10 0.10 0.18 
#> 

## calculate doses giving an improvement of 0.3 over placebo
TD(fmodels, Delta=0.3, direction = "decreasing")
#>      linear        emax    logistic exponential    betaMod1    betaMod2 
#>  112.500000   45.000000   62.095220  130.265330    4.880978   56.762044 
#>     linInt1     linInt2 
#>   21.250000   43.750000 
## discrete version
TD(fmodels, Delta=0.3, TDtype = "discrete", doses=doses, direction = "decreasing")
#>      linear        emax    logistic exponential    betaMod1    betaMod2 
#>         150          50         100         150          10         100 
#>     linInt1     linInt2 
#>          25          50 
## doses giving 50% of the maximum effect
ED(fmodels, p=0.5)
#>      linear        emax    logistic exponential    betaMod1    betaMod2 
#>   75.000000   18.750000   50.215409  104.517639    1.255838   37.337384 
#>     linInt1     linInt2 
#>   17.500000   37.500000 
ED(fmodels, p=0.5, EDtype = "discrete", doses=doses)
#>      linear        emax    logistic exponential    betaMod1    betaMod2 
#>         100          25         100         150          10          50 
#>     linInt1     linInt2 
#>          25          50 

plot(fmodels, plotTD = TRUE, Delta = 0.3)


## example for specifying all model parameters (fullMod=TRUE)
fmods <- Mods(emax = c(0, 1, 0.1), linear = cbind(c(-0.4,0), c(0.2,0.1)),
              sigEmax = c(0, 1.1, 0.5, 3),
              doses = 0:4, fullMod = TRUE)
getResp(fmods, doses=seq(0,4,length=11))
#>          emax linear1 linear2   sigEmax
#> 0   0.0000000   -0.40    0.00 0.0000000
#> 0.4 0.8000000   -0.32    0.04 0.3724868
#> 0.8 0.8888889   -0.24    0.08 0.8841444
#> 1.2 0.9230769   -0.16    0.12 1.0257960
#> 1.6 0.9411765   -0.08    0.16 1.0674248
#> 2   0.9523810    0.00    0.20 1.0830769
#> 2.4 0.9600000    0.08    0.24 1.0901427
#> 2.8 0.9655172    0.16    0.28 1.0937718
#> 3.2 0.9696970    0.24    0.32 1.0958198
#> 3.6 0.9729730    0.32    0.36 1.0970608
#> 4   0.9756098    0.40    0.40 1.0978558
#> attr(,"parList")
#> attr(,"parList")$emax
#> [1] 0.0 1.0 0.1
#> 
#> attr(,"parList")$linear1
#> [1] -0.4  0.2
#> 
#> attr(,"parList")$linear2
#> [1] 0.0 0.1
#> 
#> attr(,"parList")$sigEmax
#> [1] 0.0 1.1 0.5 3.0
#> 
## calculate doses giving an improvement of 0.3 over placebo
TD(fmods, Delta=0.3)
#>       emax    linear1    linear2    sigEmax 
#> 0.04285714 1.50000000 3.00000000 0.36056239 
## discrete version
TD(fmods, Delta=0.3, TDtype = "discrete", doses=0:4)
#>    emax linear1 linear2 sigEmax 
#>       1       2       3       1 
## doses giving 50% of the maximum effect
ED(fmods, p=0.5)
#>      emax   linear1   linear2   sigEmax 
#> 0.0952381 2.0000000 2.0000000 0.4993506 
ED(fmods, p=0.5, EDtype = "discrete", doses=0:4)
#>    emax linear1 linear2 sigEmax 
#>       1       2       2       1 
plot(fmods)