Usage
# S3 method for class 'mmrm'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
# S3 method for class 'mmrm'
glance(x, ...)
# S3 method for class 'mmrm'
augment(
x,
newdata = NULL,
interval = c("none", "confidence", "prediction"),
se_fit = (interval != "none"),
type.residuals = c("response", "pearson", "normalized"),
...
)
Arguments
- x
(
mmrm
)
fitted model.- conf.int
(
flag
)
ifTRUE
columns for the lower (conf.low
) and upper bounds (conf.high
) of coefficient estimates are included.- conf.level
(
number
)
defines the range of the optional confidence internal.- ...
only used by
augment()
to pass arguments to thepredict.mmrm_tmb()
method.- newdata
(
data.frame
orNULL
)
optional new data frame.- interval
(
string
)
type of interval calculation.- se_fit
(
flag
)
whether to return standard errors of fit.- type.residuals
(
string
)
passed on toresiduals.mmrm_tmb()
.
Functions
tidy(mmrm)
: derives tidytibble
from anmmrm
object.glance(mmrm)
: derivesglance
tibble
from anmmrm
object.augment(mmrm)
: derivesaugment
tibble
from anmmrm
object.
See also
mmrm_methods
, mmrm_tmb_methods
for additional methods.
Examples
fit <- mmrm(
formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
data = fev_data
)
# Applying tidy method to return summary table of covariate estimates.
fit |> tidy()
#> # A tibble: 11 × 6
#> term estimate std.error df statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 30.8 0.887 219. 34.7 5.96e-91
#> 2 RACEBlack or African American 1.53 0.624 169. 2.45 1.53e- 2
#> 3 RACEWhite 5.64 0.666 157. 8.48 1.56e-14
#> 4 SEXFemale 0.326 0.532 166. 0.613 5.41e- 1
#> 5 ARMCDTRT 3.77 1.07 146. 3.51 5.89e- 4
#> 6 AVISITVIS2 4.84 0.802 144. 6.04 1.27e- 8
#> 7 AVISITVIS3 10.3 0.823 156. 12.6 1.86e-25
#> 8 AVISITVIS4 15.1 1.31 138. 11.5 8.11e-22
#> 9 ARMCDTRT:AVISITVIS2 -0.0419 1.13 139. -0.0371 9.70e- 1
#> 10 ARMCDTRT:AVISITVIS3 -0.694 1.19 158. -0.584 5.60e- 1
#> 11 ARMCDTRT:AVISITVIS4 0.624 1.85 130. 0.337 7.36e- 1
fit |> tidy(conf.int = TRUE, conf.level = 0.9)
#> # A tibble: 11 × 8
#> term estimate std.error df statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 30.8 0.887 219. 34.7 5.96e-91 29.3 32.2
#> 2 ARMCDTRT 3.77 1.07 146. 3.51 5.89e- 4 2.00 5.55
#> 3 ARMCDTRT:AVIS… -0.0419 1.13 139. -0.0371 9.70e- 1 -1.91 1.83
#> 4 ARMCDTRT:AVIS… -0.694 1.19 158. -0.584 5.60e- 1 -2.66 1.27
#> 5 ARMCDTRT:AVIS… 0.624 1.85 130. 0.337 7.36e- 1 -2.44 3.69
#> 6 AVISITVIS2 4.84 0.802 144. 6.04 1.27e- 8 3.51 6.17
#> 7 AVISITVIS3 10.3 0.823 156. 12.6 1.86e-25 8.98 11.7
#> 8 AVISITVIS4 15.1 1.31 138. 11.5 8.11e-22 12.9 17.2
#> 9 RACEBlack or … 1.53 0.624 169. 2.45 1.53e- 2 0.498 2.56
#> 10 RACEWhite 5.64 0.666 157. 8.48 1.56e-14 4.54 6.74
#> 11 SEXFemale 0.326 0.532 166. 0.613 5.41e- 1 -0.554 1.21
# Applying glance method to return summary table of goodness of fit statistics.
fit |> glance()
#> # A tibble: 1 × 4
#> AIC BIC logLik deviance
#> <dbl> <dbl> <dbl> <dbl>
#> 1 3406. 3439. -1693. 3386.
# Applying augment method to return merged `tibble` of model data, fitted and residuals.
fit |> augment()
#> # A tibble: 537 × 9
#> .rownames FEV1 RACE SEX ARMCD AVISIT USUBJID .fitted .resid
#> <dbl> <dbl> <fct> <fct> <fct> <fct> <fct> <dbl> <dbl>
#> 1 2 40.0 Black or African … Fema… TRT VIS2 PT1 41.2 -1.23
#> 2 4 20.5 Black or African … Fema… TRT VIS4 PT1 52.1 -31.6
#> 3 6 31.5 Asian Male PBO VIS2 PT2 35.6 -4.16
#> 4 7 36.9 Asian Male PBO VIS3 PT2 41.1 -4.24
#> 5 8 48.8 Asian Male PBO VIS4 PT2 45.8 2.98
#> 6 10 36.0 Black or African … Fema… PBO VIS2 PT3 37.5 -1.49
#> 7 12 37.2 Black or African … Fema… PBO VIS4 PT3 47.7 -10.5
#> 8 13 33.9 Asian Fema… TRT VIS1 PT4 34.9 -0.985
#> 9 14 33.7 Asian Fema… TRT VIS2 PT4 39.7 -5.93
#> 10 16 54.5 Asian Fema… TRT VIS4 PT4 50.6 3.89
#> # ℹ 527 more rows
fit |> augment(interval = "confidence")
#> # A tibble: 537 × 12
#> .rownames FEV1 RACE SEX ARMCD AVISIT USUBJID .fitted .lower .upper
#> <dbl> <dbl> <fct> <fct> <fct> <fct> <fct> <dbl> <dbl> <dbl>
#> 1 2 40.0 Black or Af… Fema… TRT VIS2 PT1 41.2 41.2 41.2
#> 2 4 20.5 Black or Af… Fema… TRT VIS4 PT1 52.1 52.0 52.2
#> 3 6 31.5 Asian Male PBO VIS2 PT2 35.6 35.6 35.7
#> 4 7 36.9 Asian Male PBO VIS3 PT2 41.1 41.1 41.1
#> 5 8 48.8 Asian Male PBO VIS4 PT2 45.8 45.7 45.9
#> 6 10 36.0 Black or Af… Fema… PBO VIS2 PT3 37.5 37.4 37.5
#> 7 12 37.2 Black or Af… Fema… PBO VIS4 PT3 47.7 47.6 47.8
#> 8 13 33.9 Asian Fema… TRT VIS1 PT4 34.9 34.8 34.9
#> 9 14 33.7 Asian Fema… TRT VIS2 PT4 39.7 39.6 39.7
#> 10 16 54.5 Asian Fema… TRT VIS4 PT4 50.6 50.5 50.7
#> # ℹ 527 more rows
#> # ℹ 2 more variables: .se.fit <dbl>, .resid <dbl>
fit |> augment(type.residuals = "pearson")
#> # A tibble: 537 × 9
#> .rownames FEV1 RACE SEX ARMCD AVISIT USUBJID .fitted .resid
#> <dbl> <dbl> <fct> <fct> <fct> <fct> <fct> <dbl> <dbl>
#> 1 2 40.0 Black or African A… Fema… TRT VIS2 PT1 41.2 -0.240
#> 2 4 20.5 Black or African A… Fema… TRT VIS4 PT1 52.1 -3.23
#> 3 6 31.5 Asian Male PBO VIS2 PT2 35.6 -0.807
#> 4 7 36.9 Asian Male PBO VIS3 PT2 41.1 -1.10
#> 5 8 48.8 Asian Male PBO VIS4 PT2 45.8 0.305
#> 6 10 36.0 Black or African A… Fema… PBO VIS2 PT3 37.5 -0.288
#> 7 12 37.2 Black or African A… Fema… PBO VIS4 PT3 47.7 -1.08
#> 8 13 33.9 Asian Fema… TRT VIS1 PT4 34.9 -0.155
#> 9 14 33.7 Asian Fema… TRT VIS2 PT4 39.7 -1.15
#> 10 16 54.5 Asian Fema… TRT VIS4 PT4 50.6 0.398
#> # ℹ 527 more rows