Print a fitted progression model for repeated measures (PMRM).
Usage
# S3 method for class 'pmrm_fit'
print(x, digits = 3L, ...)See also
Other visualization:
plot.pmrm_fit()
Examples
set.seed(0L)
simulation <- pmrm_simulate_decline_proportional(
visit_times = seq_len(5L) - 1,
gamma = c(1, 2)
)
fit <- pmrm_model_decline_proportional(
data = simulation,
outcome = "y",
time = "t",
patient = "patient",
visit = "visit",
arm = "arm",
covariates = ~ w_1 + w_2
)
print(fit)
#> Model:
#>
#> PMRM type: decline
#> Parameterization: proportional
#>
#> Fit:
#>
#> Convergence: converged
#> Observations: 1500
#> Parameters: 24
#> Log likelihood: -2114.424
#> Deviance: 4228.847
#> AIC: 4276.847
#> BIC: 4404.364
#>
#> Treatment effects:
#>
#> estimate std.error
#> arm_2 0.1549676 0.05396748
#> arm_3 0.2221882 0.05260613
