
Package index
-
pmrm_simulate_decline_nonproportional() - Simulate non-proportional decline model.
-
pmrm_simulate_decline_proportional() - Simulate proportional decline model.
-
pmrm_simulate_slowing_nonproportional() - Simulate non-proportional slowing model.
-
pmrm_simulate_slowing_proportional() - Simulate proportional slowing model.
-
pmrm_model_decline_nonproportional() - Fit the non-proportional decline model.
-
pmrm_model_decline_proportional() - Fit the proportional decline model.
-
pmrm_model_slowing_nonproportional() - Fit the non-proportional slowing model.
-
pmrm_model_slowing_proportional() - Fit the proportional slowing model.
-
plot(<pmrm_fit>) - Plot a fitted PMRM.
-
print(<pmrm_fit>) - Print a fitted PMRM.
-
coef(<pmrm_fit>) - Treatment effect parameters
-
confint(<pmrm_fit>) - Confidence intervals of parameters
-
pmrm_estimates() - Parameter estimates and confidence intervals
-
pmrm_marginals() - Marginal means
-
tidy(<pmrm_fit>) - Tidy a fitted PMRM.
-
VarCorr(<pmrm_fit>) - Estimated covariance matrix
-
vcov(<pmrm_fit>) - Treatment effect parameter covariance matrix
-
fitted(<pmrm_fit>) - Fitted values
-
predict(<pmrm_fit>) - Predict new outcomes
-
residuals(<pmrm_fit>) pmrmresiduals.
-
AIC(<pmrm_fit>) - Akaike information criterion (AIC)
-
BIC(<pmrm_fit>) - Bayesian information criterion (BIC)
-
deviance(<pmrm_fit>) - Deviance
-
glance(<pmrm_fit>) - Glance at a PMRM.
-
logLik(<pmrm_fit>) - Extract the log likelihood.
-
summary(<pmrm_fit>) - Summarize a PMRM.