Skip to contents

Simulations

pmrm_simulate_decline_nonproportional()
Simulate non-proportional decline model.
pmrm_simulate_decline_proportional()
Simulate proportional decline model.
pmrm_simulate_slowing_nonproportional()
Simulate non-proportional slowing model.
pmrm_simulate_slowing_proportional()
Simulate proportional slowing model.

Models

pmrm_model_decline_nonproportional()
Fit the non-proportional decline model.
pmrm_model_decline_proportional()
Fit the proportional decline model.
pmrm_model_slowing_nonproportional()
Fit the non-proportional slowing model.
pmrm_model_slowing_proportional()
Fit the proportional slowing model.

Visualization

plot(<pmrm_fit>)
Plot a fitted PMRM.
print(<pmrm_fit>)
Print a fitted PMRM.

Estimates

coef(<pmrm_fit>)
Treatment effect parameters
confint(<pmrm_fit>)
Confidence intervals of parameters
pmrm_estimates()
Parameter estimates and confidence intervals
pmrm_marginals()
Marginal means
tidy(<pmrm_fit>)
Tidy a fitted PMRM.
VarCorr(<pmrm_fit>)
Estimated covariance matrix
vcov(<pmrm_fit>)
Treatment effect parameter covariance matrix

Predictions

fitted(<pmrm_fit>)
Fitted values
predict(<pmrm_fit>)
Predict new outcomes
residuals(<pmrm_fit>)
pmrm residuals.

Comparison

AIC(<pmrm_fit>)
Akaike information criterion (AIC)
BIC(<pmrm_fit>)
Bayesian information criterion (BIC)
deviance(<pmrm_fit>)
Deviance
glance(<pmrm_fit>)
Glance at a PMRM.
logLik(<pmrm_fit>)
Extract the log likelihood.
summary(<pmrm_fit>)
Summarize a PMRM.