ModelParamsNormal
is the class for a bivariate normal model parameters,
i.e. the mean vector, covariance matrix and precision matrix.
The precision matrix is an inverse of the covariance matrix in the
JAGS
and it is computed internally by the object constructor function.
Usage
ModelParamsNormal(mean, cov)
.DefaultModelParamsNormal()
Arguments
- mean
(numeric
)
the prior mean vector.
- cov
(matrix
)
the prior covariance matrix. The precision matrix
prec
is internally calculated as an inverse of cov
.
Slots
mean
(numeric
)
the mean vector.
cov
(matrix
)
the covariance matrix.
prec
(matrix
)
the precision matrix, which is an inverse matrix of the cov
.
Note
Typically, end users will not use the .ModelPAramsNormal()
function.
Examples
ModelParamsNormal(mean = c(1, 6), cov = diag(2))
#> An object of class "ModelParamsNormal"
#> Slot "mean":
#> [1] 1 6
#>
#> Slot "cov":
#> [,1] [,2]
#> [1,] 1 0
#> [2,] 0 1
#>
#> Slot "prec":
#> [,1] [,2]
#> [1,] 1 0
#> [2,] 0 1
#>