Skip to contents

Package

-package crmPack-package crmPack
Object-oriented implementation of CRM designs

Classes

Validate stable
Validate
positive_number experimental
positive_number
CrmPackClass-class .CrmPackClass CrmPackClass experimental
CrmPackClass
.DefaultDataGeneral() stable
GeneralData
Data() .DefaultData() stable
Data
DataDual() .DefaultDataDual() stable
DataDual
DataOrdinal() .DefaultDataOrdinal() experimental
DataOrdinal
DataParts() .DefaultDataParts() stable
DataParts
DataMixture() .DefaultDataMixture() stable
DataMixture
DataDA() .DefaultDataDA() stable
DataDA
DataGrouped() .DefaultDataGrouped() stable
DataGrouped
McmcOptions() .DefaultMcmcOptions() stable
McmcOptions
ModelParamsNormal() .DefaultModelParamsNormal() experimental
ModelParamsNormal
.DefaultGeneralModel() stable
GeneralModel
ModelLogNormal() .DefaultModelLogNormal() stable
ModelLogNormal
LogisticNormal() .DefaultLogisticNormal() stable
LogisticNormal
LogisticLogNormal() .DefaultLogisticLogNormal() stable
LogisticLogNormal
LogisticLogNormalSub() .DefaultLogisticLogNormalSub() stable
LogisticLogNormalSub
ProbitLogNormal() .DefaultProbitLogNormal() stable
ProbitLogNormal
ProbitLogNormalRel() .DefaultProbitLogNormalRel() stable
ProbitLogNormalRel
LogisticLogNormalGrouped() .DefaultLogisticLogNormalGrouped() experimental
LogisticLogNormalGrouped
LogisticKadane() .DefaultLogisticKadane() stable
LogisticKadane
LogisticKadaneBetaGamma() .DefaultLogisticKadaneBetaGamma() experimental
LogisticKadaneBetaGamma
LogisticNormalMixture() .DefaultLogisticNormalMixture() stable
LogisticNormalMixture
LogisticNormalFixedMixture() .DefaultLogisticNormalFixedMixture() stable
LogisticNormalFixedMixture
LogisticLogNormalMixture() .DefaultLogisticLogNormalMixture() stable
LogisticLogNormalMixture
DualEndpoint() .DefaultDualEndpoint() experimental
DualEndpoint
DualEndpointRW() .DefaultDualEndpointRW() experimental
DualEndpointRW
DualEndpointBeta() .DefaultDualEndpointBeta() experimental
DualEndpointBeta
DualEndpointEmax() .DefaultDualEndpointEmax() experimental
DualEndpointEmax
.DefaultModelPseudo() stable
ModelPseudo
.DefaultModelTox() stable
ModelTox
.DefaultModelEff() stable
ModelEff
LogisticIndepBeta() .DefaultLogisticIndepBeta() stable
LogisticIndepBeta
Effloglog() .DefaultEffloglog() stable
Effloglog
EffFlexi() .DefaultEffFlexi() stable
EffFlexi
DALogisticLogNormal() .DefaultDALogisticLogNormal() stable
DALogisticLogNormal
TITELogisticLogNormal() .DefaultTITELogisticLogNormal() stable
TITELogisticLogNormal
OneParLogNormalPrior() .DefaultOneParLogNormalPrior() stable
OneParLogNormalPrior
OneParExpPrior() .DefaultOneParExpPrior() experimental
OneParExpPrior
FractionalCRM() .DefaultFractionalCRM() stable
FractionalCRM
Samples() .DefaultSamples() stable
Samples
.DefaultNextBest() stable
NextBest
NextBestMTD() .DefaultNextBestMTD() stable
NextBestMTD
NextBestNCRM() .DefaultNextBestNCRM() stable
NextBestNCRM
NextBestNCRMLoss() .DefaultNextBestNCRMLoss() stable
NextBestNCRMLoss
NextBestThreePlusThree() .DefaultNextBestThreePlusThree() stable
NextBestThreePlusThree
NextBestDualEndpoint() .DefaultNextBestDualEndpoint() experimental
NextBestDualEndpoint
NextBestMinDist() .DefaultNextBestMinDist() stable
NextBestMinDist
NextBestInfTheory() .DefaultNextBestInfTheory() stable
NextBestInfTheory
.DefaultNextBestTD() NextBestTD() stable
NextBestTD
NextBestTDsamples() .DefaultNextBestTDsamples() stable
NextBestTDsamples
NextBestMaxGain() .DefaultNextBestMaxGain() stable
NextBestMaxGain
NextBestMaxGainSamples() .DefaultNextBestMaxGainSamples() stable
NextBestMaxGainSamples
NextBestProbMTDLTE() .DefaultNextBestProbMTDLTE() experimental
NextBestProbMTDLTE
NextBestProbMTDMinDist() .DefaultNextBestProbMTDMinDist() experimental
NextBestProbMTDMinDist
.DefaultIncrements() stable
Increments
IncrementsRelative() .DefaultIncrementsRelative() stable
IncrementsRelative
IncrementsRelativeParts() .DefaultIncrementsRelativeParts() stable
IncrementsRelativeParts
IncrementsRelativeDLT() .DefaultIncrementsRelativeDLT() stable
IncrementsRelativeDLT
IncrementsRelativeDLTCurrent() .DefaultIncrementsRelativeDLTCurrent() experimental
IncrementsRelativeDLTCurrent
IncrementsDoseLevels() .DefaultIncrementsDoseLevels() stable
IncrementsDoseLevels
IncrementsHSRBeta() .DefaultIncrementsHSRBeta() experimental
IncrementsHSRBeta
IncrementsMin() .DefaultIncrementsMin() stable
IncrementsMin
IncrementsMaxToxProb() .DefaultIncrementsMaxToxProb() experimental
IncrementsMaxToxProb
Stopping-class Stopping stable
Stopping
StoppingMissingDose() .DefaultStoppingMissingDose() experimental
StoppingMissingDose
StoppingCohortsNearDose() .DefaultStoppingCohortsNearDose() stable
StoppingCohortsNearDose
StoppingPatientsNearDose() .DefaultStoppingPatientsNearDose() stable
StoppingPatientsNearDose
StoppingMinCohorts() .DefaultStoppingMinCohorts() stable
StoppingMinCohorts
StoppingMinPatients() .DefaultStoppingMinPatients() stable
StoppingMinPatients
StoppingTargetProb() .DefaultStoppingTargetProb() stable
StoppingTargetProb
StoppingMTDdistribution() .DefaultStoppingMTDdistribution() stable
StoppingMTDdistribution
StoppingMTDCV() .DefaultStoppingMTDCV() experimental
StoppingMTDCV
StoppingLowestDoseHSRBeta() .DefaultStoppingLowestDoseHSRBeta() experimental
StoppingLowestDoseHSRBeta
StoppingTargetBiomarker() .DefaultStoppingTargetBiomarker() stable
StoppingTargetBiomarker
StoppingSpecificDose() .DefaultStoppingSpecificDose() experimental
StoppingSpecificDose
StoppingHighestDose() .DefaultStoppingHighestDose() experimental
StoppingHighestDose
StoppingList() .DefaultStoppingList() stable
StoppingList
StoppingAll() .DefaultStoppingAll() stable
StoppingAll
StoppingAny() .DefaultStoppingAny() stable
StoppingAny
StoppingTDCIRatio() .DefaultStoppingTDCIRatio() stable
StoppingTDCIRatio
StoppingMaxGainCIRatio() .DefaultStoppingMaxGainCIRatio() stable
StoppingMaxGainCIRatio
StoppingExternal() .DefaultStoppingExternal() experimental
StoppingExternal
.DefaultCohortSize() stable
CohortSize
CohortSizeRange() .DefaultCohortSizeRange() stable
CohortSizeRange
CohortSizeDLT() .DefaultCohortSizeDLT() stable
CohortSizeDLT
CohortSizeConst() .DefaultCohortSizeConst() stable
CohortSizeConst
CohortSizeParts() .DefaultCohortSizeParts() stable
CohortSizeParts
.DefaultCohortSizeMax() CohortSizeMax() stable
CohortSizeMax
CohortSizeMin() .DefaultCohortSizeMin() stable
CohortSizeMin
.DefaultSafetyWindow() stable
SafetyWindow
SafetyWindowSize() .DefaultSafetyWindowSize() stable
SafetyWindowSize
SafetyWindowConst() .DefaultSafetyWindowConst() stable
SafetyWindowConst
RuleDesign() .DefaultRuleDesign() ThreePlusThreeDesign() stable
RuleDesign
Design() .DefaultDesign() stable
Design
DesignOrdinal() .DefaultDesignOrdinal() experimental
DesignOrdinal
RuleDesignOrdinal() .DefaultRuleDesignOrdinal() experimental
RuleDesignOrdinal
DualDesign() .DefaultDualDesign() stable
DualDesign
TDsamplesDesign() .DefaultTDsamplesDesign() stable
TDsamplesDesign
TDDesign() .DefaultTDDesign() stable
TDDesign
DesignGrouped() experimental
DesignGrouped

Internal Helper Functions

h_blind_plot_data()
Helper Function to Blind Plot Data
h_convert_ordinal_data() experimental
Convert a Ordinal Data to the Equivalent Binary Data for a Specific Grade
h_convert_ordinal_model() experimental
Convert an ordinal CRM model to the Equivalent Binary CRM Model for a Specific Grade
h_convert_ordinal_samples() experimental
Convert a Samples Object from an ordinal Model to the Equivalent Samples Object from a Binary Model
v_general_data() h_doses_unique_per_cohort() v_data() v_data_dual() v_data_parts() v_data_mixture() v_data_da() v_data_ordinal() v_data_grouped() stable
Internal Helper Functions for Validation of GeneralData Objects
h_all_equivalent() experimental
Comparison with Numerical Tolerance and Without Name Comparison
h_plot_data_df() experimental
Preparing Data for Plotting
h_plot_data_cohort_lines() experimental
Preparing Cohort Lines for Data Plot
h_check_fun_formals() experimental
Checking Formals of a Function
h_slots() experimental
Getting the Slots from a S4 Object
h_format_number() experimental
Conditional Formatting Using C-style Formats
h_rapply() experimental
Recursively Apply a Function to a List
h_null_if_na() stable
Getting NULL for NA
h_is_positive_definite() experimental
Testing Matrix for Positive Definiteness
h_test_named_numeric() stable
Check that an argument is a named vector of type numeric
h_in_range() stable
Check which elements are in a given range
h_find_interval() stable
Find Interval Numbers or Indices and Return Custom Number For 0.
h_validate_combine_results() experimental
Combining S4 Class Validation Results
h_jags_add_dummy() experimental
Appending a Dummy Number for Selected Slots in Data
h_jags_join_models() stable
Joining JAGS Models
h_jags_get_model_inits() experimental
Setting Initial Values for JAGS Model Parameters
h_jags_get_data() experimental
Getting Data for JAGS
h_jags_write_model() stable
Writing JAGS Model to a File
h_jags_extract_samples() stable
Extracting Samples from JAGS mcarray Object
h_model_dual_endpoint_sigma2W() stable
Update DualEndpoint class model components with regard to biomarker regression variance.
h_model_dual_endpoint_rho() stable
Update DualEndpoint class model components with regard to DLT and biomarker correlation.
h_model_dual_endpoint_sigma2betaW() stable
Update certain components of DualEndpoint model with regard to prior variance factor of the random walk.
h_model_dual_endpoint_beta() stable
Update certain components of DualEndpoint model with regard to parameters of the function that models dose-biomarker relationship defined in the DualEndpointBeta class.
h_info_theory_dist() experimental
Calculating the Information Theoretic Distance
h_next_best_mg_ci() experimental
Credibility Intervals for Max Gain and Target Doses at nextBest-NextBestMaxGain Method.
h_next_best_mg_doses_at_grid() experimental
Get Closest Grid Doses for a Given Target Doses for nextBest-NextBestMaxGain Method.
h_next_best_eligible_doses() experimental
Get Eligible Doses from the Dose Grid.
h_next_best_ncrm_loss_plot() experimental
Building the Plot for nextBest-NextBestNCRMLoss Method.
h_next_best_tdsamples_plot() experimental
Building the Plot for nextBest-NextBestTDsamples Method.
h_next_best_td_plot() experimental
Building the Plot for nextBest-NextBestTD Method.
h_next_best_mg_plot() experimental
Building the Plot for nextBest-NextBestMaxGain Method.
h_next_best_mgsamples_plot() experimental
Building the Plot for nextBest-NextBestMaxGainSamples Method.
h_obtain_dose_grid_range()
Helper Function Containing Common Functionality
h_covr_active() h_covr_detrace() h_is_covr_trace() h_covr_detrace_call()
Helpers for stripping expressions of covr-inserted trace code
h_default_if_empty() stable
Getting the default value for an empty object
h_unpack_stopit()
Helper function to recursively unpack stopping rules and return lists with logical value and label given
h_calc_report_label_percentage()
Helper function to calculate percentage of true stopping rules for report label output calculates true column means and converts output into percentages before combining the output with the report label; output is passed to show() and output with cat to console
h_validate_common_data_slots()
Helper Function performing validation Common to Data and DataOrdinal
h_summarize_add_stats()
Helper function to calculate average across iterations for each additional reporting parameter extracts parameter names as specified by user and averaged the values for each specified parameter to show() and output with cat to console
h_determine_dlts()
Helper function to determine the dlts including first separate and placebo condition

Internal Validation Functions

v_general_data() h_doses_unique_per_cohort() v_data() v_data_dual() v_data_parts() v_data_mixture() v_data_da() v_data_ordinal() v_data_grouped() stable
Internal Helper Functions for Validation of GeneralData Objects
v_mcmc_options() stable
Internal Helper Functions for Validation of McmcOptions Objects
v_model_params_normal() experimental
Internal Helper Functions for Validation of Model Parameters Objects
v_general_model() v_model_logistic_kadane() v_model_logistic_kadane_beta_gamma() v_model_logistic_normal_mix() v_model_logistic_normal_fixed_mix() v_model_logistic_log_normal_mix() v_model_dual_endpoint() v_model_dual_endpoint_rw() v_model_dual_endpoint_beta() v_model_dual_endpoint_emax() v_model_logistic_indep_beta() v_model_eff_log_log() v_model_eff_flexi() v_model_da_logistic_log_normal() v_model_tite_logistic_log_normal() v_model_one_par_exp_normal_prior() v_model_one_par_exp_prior() v_logisticlognormalordinal() stable
Internal Helper Functions for Validation of GeneralModel and ModelPseudo Objects
v_samples()
Internal Helper Functions for Validation of Samples Objects
v_next_best_mtd() v_next_best_ncrm() v_next_best_ncrm_loss() v_next_best_dual_endpoint() v_next_best_min_dist() v_next_best_inf_theory() v_next_best_td() v_next_best_td_samples() v_next_best_max_gain_samples() v_next_best_prob_mtd_lte() v_next_best_prob_mtd_min_dist() v_next_best_ordinal() stable
Internal Helper Functions for Validation of NextBest Objects
v_increments_relative() v_increments_relative_parts() v_increments_relative_dlt() v_increments_dose_levels() v_increments_hsr_beta() v_increments_min() v_increments_maxtoxprob() v_increments_ordinal() v_cohort_size_ordinal() stable
Internal Helper Functions for Validation of Increments Objects
v_starting_dose() experimental
Internal Helper Functions for Validation of StartingDose Objects
v_stopping_cohorts_near_dose() v_stopping_patients_near_dose() v_stopping_min_cohorts() v_stopping_min_patients() v_stopping_target_prob() v_stopping_mtd_distribution() v_stopping_mtd_cv() v_stopping_target_biomarker() v_stopping_list() v_stopping_all() v_stopping_tdci_ratio() stable
Internal Helper Functions for Validation of Stopping Objects
v_cohort_size_range() v_cohort_size_dlt() v_cohort_size_const() v_cohort_size_parts() v_cohort_size_max() stable
Internal Helper Functions for Validation of CohortSize Objects
v_safety_window_size() v_safety_window_const() stable
Internal Helper Functions for Validation of SafetyWindow Objects
v_rule_design() v_rule_design_ordinal() v_design_grouped() stable
Internal Helper Functions for Validation of RuleDesign Objects
v_general_simulations() v_simulations() v_dual_simulations() v_da_simulations() stable
Internal Helper Functions for Validation of GeneralSimulations Objects
v_pseudo_simulations() v_pseudo_dual_simulations() v_pseudo_dual_flex_simulations() stable
Internal Helper Functions for Validation of PseudoSimulations Objects

Custom Checkmate Assertions

check_probabilities() assert_probabilities() test_probabilities() expect_probabilities() stable
Check if an argument is a probability vector
check_probability() assert_probability() test_probability() expect_probability() stable
Check if an argument is a single probability value
check_probability_range() assert_probability_range() test_probability_range() expect_probability_range() stable
Check if an argument is a probability range
check_length() assert_length() test_length() stable
Check if vectors are of compatible lengths
check_range() assert_range() test_range() expect_range() stable
Check that an argument is a numerical range

Methods

h_plot_data_dataordinal() plot(<Data>,<missing>) plot(<DataOrdinal>,<missing>) stable
Helper Function for the Plot Method of the Data and DataOrdinal Classes
plot(<DataDual>,<missing>) stable
Plot Method for the DataDual Class
plot(<DataDA>,<missing>) stable
Plot Method for the DataDA Class
update(<Data>) stable
Updating Data Objects
update(<DataParts>) stable
Updating DataParts Objects
update(<DataDual>) stable
Updating DataDual Objects
update(<DataDA>) stable
Updating DataDA Objects
update(<DataOrdinal>) experimental
Updating DataOrdinal Objects
getEff() stable
Extracting Efficacy Responses for Subjects Categorized by the DLT
ngrid() stable
Number of Doses in Grid
dose_grid_range() stable
Getting the Dose Grid Range
saveSample() stable
Determining if this Sample Should be Saved
size() stable
Size of an Object
doseFunction() experimental
Getting the Dose Function for a Given Model Type
dose() stable
Computing the Doses for a given independent variable, Model and Samples
probFunction() experimental
Getting the Prob Function for a Given Model Type
prob() stable
Computing Toxicity Probabilities for a Given Dose, Model and Samples
efficacyFunction() experimental
Getting the Efficacy Function for a Given Model Type
efficacy() stable
Computing Expected Efficacy for a Given Dose, Model and Samples
biomarker() experimental
Get the Biomarker Levels for a Given Dual-Endpoint Model, Given Dose Levels and Samples
gain() stable
Compute Gain Values based on Pseudo DLE and a Pseudo Efficacy Models and Using Optional Samples.
update(<ModelPseudo>)
Update method for the ModelPseudo model class. This is a method to update the model class slots (estimates, parameters, variables and etc.), when the new data (e.g. new observations of responses) are available. This method is mostly used to obtain new modal estimates for pseudo model parameters.
mcmc() stable
Obtaining Posterior Samples for all Model Parameters
names(<Samples>) stable
The Names of the Sampled Parameters
nextBest() stable
Finding the Next Best Dose
stopTrial() stable
Stop the trial?
maxDose() stable
Determine the Maximum Possible Next Dose

Functions

enable_logging() disable_logging() is_logging_enabled() log_trace() experimental
Verbose Logging
dapply() experimental
Apply a Function to Subsets of Data Frame.
knit_print(<CohortSizeConst>) knit_print(<CohortSizeRange>) knit_print(<CohortSizeDLT>) knit_print(<CohortSizeParts>) knit_print(<CohortSizeMax>) knit_print(<CohortSizeMin>) knit_print(<CohortSizeOrdinal>) knit_print(<StartingDose>) knit_print(<RuleDesign>) knit_print(<Design>) knit_print(<DualDesign>) knit_print(<DADesign>) knit_print(<TDDesign>) knit_print(<DualResponsesDesign>) knit_print(<DesignOrdinal>) knit_print(<DesignGrouped>) knit_print(<TDsamplesDesign>) knit_print(<DualResponsesSamplesDesign>) knit_print(<RuleDesignOrdinal>) knit_print(<GeneralData>) knit_print(<DataParts>) knit_print(<DualEndpoint>) knit_print(<ModelParamsNormal>) knit_print(<GeneralModel>) knit_print(<LogisticKadane>) knit_print(<LogisticKadaneBetaGamma>) knit_print(<LogisticLogNormal>) knit_print(<LogisticLogNormalMixture>) knit_print(<LogisticLogNormalSub>) knit_print(<LogisticNormalMixture>) knit_print(<LogisticNormalFixedMixture>) knit_print(<OneParLogNormalPrior>) knit_print(<OneParExpPrior>) knit_print(<LogisticLogNormalGrouped>) knit_print(<LogisticLogNormalOrdinal>) knit_print(<LogisticIndepBeta>) knit_print(<Effloglog>) knit_print(<IncrementsRelative>) knit_print(<IncrementsRelativeDLT>) knit_print(<IncrementsDoseLevels>) knit_print(<IncrementsHSRBeta>) knit_print(<IncrementsMin>) knit_print(<IncrementsOrdinal>) knit_print(<IncrementsRelativeParts>) knit_print(<IncrementsRelativeDLTCurrent>) knit_print(<NextBestMTD>) knit_print(<NextBestNCRM>) knit_print(<NextBestThreePlusThree>) knit_print(<NextBestDualEndpoint>) knit_print(<NextBestMinDist>) knit_print(<NextBestInfTheory>) knit_print(<NextBestTD>) knit_print(<NextBestMaxGain>) knit_print(<NextBestProbMTDLTE>) knit_print(<NextBestProbMTDMinDist>) knit_print(<NextBestNCRMLoss>) knit_print(<NextBestTDsamples>) knit_print(<NextBestMaxGainSamples>) knit_print(<NextBestOrdinal>) knit_print(<SafetyWindow>) knit_print(<SafetyWindowConst>) knit_print(<SafetyWindowSize>) knit_print(<StoppingOrdinal>) knit_print(<StoppingMaxGainCIRatio>) knit_print(<StoppingList>) knit_print(<StoppingAny>) knit_print(<StoppingAll>) knit_print(<StoppingTDCIRatio>) knit_print(<StoppingTargetBiomarker>) knit_print(<StoppingLowestDoseHSRBeta>) knit_print(<StoppingMTDCV>) knit_print(<StoppingMTDdistribution>) knit_print(<StoppingHighestDose>) knit_print(<StoppingSpecificDose>) knit_print(<StoppingTargetProb>) knit_print(<StoppingMinCohorts>) knit_print(<StoppingMinPatients>) knit_print(<StoppingPatientsNearDose>) knit_print(<StoppingCohortsNearDose>) knit_print(<StoppingMissingDose>) experimental
Render a CohortSizeConst Object

Classes

CohortSizeOrdinal() .DefaultCohortSizeOrdinal() experimental
CohortSizeOrdinal
IncrementsOrdinal() .DefaultIncrementsOrdinal() experimental
IncrementsOrdinal
DADesign() .DefaultDADesign() stable
DADesign
.DefaultDASimulations()
Class for the simulations output from DA based designs
DASimulations()
Initialization function for DASimulations
DualResponsesDesign() .DefaultDualResponsesDesign() stable
DualResponsesDesign.R
DualResponsesSamplesDesign() .DefaultDualResponsesSamplesDesign() stable
DualResponsesSamplesDesign
DualSimulations() .DefaultDualSimulations() stable
DualSimulations
.DefaultDualSimulationsSummary() stable
DualSimulationsSummary
GeneralSimulations() .DefaultGeneralSimulations() stable
GeneralSimulations @description [Stable] This class captures trial simulations. Here also the random generator state before starting the simulation is saved, in order to be able to reproduce the outcome. For this just use set.seed with the seed as argument before running simulate,Design-method.
.DefaultGeneralSimulationsSummary() .DefaultPseudoSimulationsSummary() stable
GeneralSimulationsSummary
IncrementsMaxToxProb() .DefaultIncrementsMaxToxProb() experimental
IncrementsMaxToxProb
LogisticLogNormalOrdinal() .DefaultLogisticLogNormalOrdinal() experimental
LogisticLogNormalOrdinal
MinimalInformative()
Construct a minimally informative prior
NextBestOrdinal() .DefaultNextBestOrdinal() experimental
NextBestOrdinal
.DefaultPseudoDualFlexiSimulations()
This is a class which captures the trial simulations design using both the DLE and efficacy responses. The design of model from ModelTox class and the efficacy model from EffFlexi class It contains all slots from GeneralSimulations, PseudoSimulations and PseudoDualSimulations object. In comparison to the parent class PseudoDualSimulations, it contains additional slots to capture the sigma2betaW estimates.
PseudoDualFlexiSimulations()
Initialization function for 'PseudoDualFlexiSimulations' class
PseudoDualSimulations() .DefaultPseudoDualSimulations() stable
PseudoDualSimulations
.DefaultPseudoDualSimulationsSummary()
Class for the summary of the dual responses simulations using pseudo models
PseudoSimulations() .DefaultPseudoSimulations() stable
PseudoSimulations
PseudoSimulationsSummary-class .PseudoSimulationsSummary
Class for the summary of pseudo-models simulations output
Quantiles2LogisticNormal()
Convert prior quantiles (lower, median, upper) to logistic (log) normal model
Report
A Reference Class to represent sequentially updated reporting objects.
Simulations() .DefaultSimulations() stable
Simulations
.DefaultSimulationsSummary() stable
SimulationsSummary
StoppingOrdinal() .DefaultStoppingOrdinal() experimental
StoppingOrdinal
approximate()
Approximate posterior with (log) normal distribution
assertions experimental
Additional Assertions for checkmate
check_equal() assert_equal() experimental
Check if All Arguments Are Equal
check_format() assert_format() test_format() expect_format() stable
Check that an argument is a valid format specification
crmPackExample()
Open the example pdf for crmPack
crmPackHelp()
Open the browser with help pages for crmPack
examine()
Obtain hypothetical trial course table for a design
fit()
Fit method for the Samples class
fitGain()
Get the fitted values for the gain values at all dose levels based on a given pseudo DLE model, DLE sample, a pseudo efficacy model, a Efficacy sample and data. This method returns a data frame with dose, middle, lower and upper quantiles of the gain value samples
fitPEM()
Get the fitted DLT free survival (piecewise exponential model). This function returns a data frame with dose, middle, lower and upper quantiles for the PEM curve. If hazard=TRUE,
get(<Samples>,<character>)
Get specific parameter samples and produce a data.frame
h_get_min_inf_beta()
Helper for Minimal Informative Unimodal Beta Distribution
logit()
Shorthand for logit function
match_within_tolerance()
Helper function for value matching with tolerance
maxSize()
"MAX" combination of cohort size rules
minSize()
"MIN" combination of cohort size rules
`|`(<Stopping>,<Stopping>)
The method combining two atomic stopping rules
`|`(<StoppingAny>,<Stopping>)
The method combining a stopping list and an atomic
`|`(<Stopping>,<StoppingAny>)
The method combining an atomic and a stopping list
plot(<Data>,<ModelTox>)
Plot of the fitted dose-tox based with a given pseudo DLE model and data without samples
plot(<DataDual>,<ModelEff>)
Plot of the fitted dose-efficacy based with a given pseudo efficacy model and data without samples
plot(<DualSimulations>,<missing>)
Plot dual-endpoint simulations
plot(<DualSimulationsSummary>,<missing>)
Plot summaries of the dual-endpoint design simulations
plot(<GeneralSimulations>,<missing>)
Plot simulations
plot(<GeneralSimulationsSummary>,<missing>)
Graphical display of the general simulation summary
plot(<PseudoDualFlexiSimulations>,<missing>)
This plot method can be applied to PseudoDualFlexiSimulations objects in order to summarize them graphically. Possible types of plots at the moment are:
trajectory

Summary of the trajectory of the simulated trials

dosesTried

Average proportions of the doses tested in patients

sigma2

The variance of the efficacy responses

sigma2betaW

The variance of the random walk model

You can specify one or both of these in the type argument.
plot(<PseudoDualSimulations>,<missing>)
Plot simulations
plot(<PseudoDualSimulationsSummary>,<missing>)
Plot the summary of Pseudo Dual Simulations summary
plot(<PseudoSimulationsSummary>,<missing>)
Plot summaries of the pseudo simulations
plot(<Samples>,<DALogisticLogNormal>)
Plotting dose-toxicity model fits
plot(<Samples>,<DualEndpoint>)
Plotting dose-toxicity and dose-biomarker model fits
plot(<Samples>,<GeneralModel>)
Plotting dose-toxicity model fits
plot(<Samples>,<ModelEff>)
Plot the fitted dose-efficacy curve using a model from ModelEff class with samples
plot(<Samples>,<ModelTox>)
Plot the fitted dose-DLE curve using a ModelTox class model with samples
plot(<SimulationsSummary>,<missing>)
Plot summaries of the model-based design simulations
plotDualResponses()
Plot of the DLE and efficacy curve side by side given a DLE pseudo model, a DLE sample, an efficacy pseudo model and a given efficacy sample
plotGain()
Plot the gain curve in addition with the dose-DLE and dose-efficacy curve using a given DLE pseudo model, a DLE sample, a given efficacy pseudo model and an efficacy sample
plot(<gtable>) print(<gtable>)
Plot gtable Objects
probit()
Shorthand for probit function
set_seed() stable
Helper Function to Set and Save the RNG Seed
show(<DualSimulationsSummary>)
Show the summary of the dual-endpoint simulations
show(<GeneralSimulationsSummary>)
Show the summary of the simulations
show(<PseudoDualSimulationsSummary>)
Show the summary of Pseudo Dual simulations summary
show(<PseudoSimulationsSummary>)
Show the summary of the simulations
show(<SimulationsSummary>)
Show the summary of the simulations
simulate(<DADesign>)
Simulate outcomes from a time-to-DLT augmented CRM design (DADesign)
simulate(<Design>)
Simulate outcomes from a CRM design
simulate(<DualDesign>)
Simulate outcomes from a dual-endpoint design
simulate(<DualResponsesDesign>)
This is a methods to simulate dose escalation procedure using both DLE and efficacy responses. This is a method based on the DualResponsesDesign where DLEmodel used are of ModelTox class object and efficacy model used are of ModelEff class object. In addition, no DLE and efficacy samples are involved or generated in the simulation process
simulate(<DualResponsesSamplesDesign>)
This is a methods to simulate dose escalation procedure using both DLE and efficacy responses. This is a method based on the DualResponsesSamplesDesign where DLEmodel used are of ModelTox class object and efficacy model used are of ModelEff class object (special case is EffFlexi class model object). In addition, DLE and efficacy samples are involved or generated in the simulation process
simulate(<RuleDesign>)
Simulate outcomes from a rule-based design
simulate(<TDDesign>)
This is a methods to simulate dose escalation procedure only using the DLE responses. This is a method based on the TDDesign where model used are of ModelTox class object and no samples are involved.
simulate(<TDsamplesDesign>)
This is a methods to simulate dose escalation procedure only using the DLE responses. This is a method based on the TDsamplesDesign where model used are of ModelTox class object DLE samples are also used
simulate(<DesignGrouped>) experimental
Simulate Method for the DesignGrouped Class
summary(<DualSimulations>)
Summarize the dual-endpoint design simulations, relative to given true dose-toxicity and dose-biomarker curves
summary(<GeneralSimulations>)
Summarize the simulations, relative to a given truth
summary(<PseudoDualFlexiSimulations>)
Summary for Pseudo Dual responses simulations given a pseudo DLE model and the Flexible efficacy model.
summary(<PseudoDualSimulations>)
Summary for Pseudo Dual responses simulations, relative to a given pseudo DLE and efficacy model (except the EffFlexi class model)
summary(<Simulations>)
Summarize the model-based design simulations, relative to a given truth
summary(<PseudoSimulations>)
Summarize the simulations, relative to a given truth
tidy() experimental
Tidying CrmPackClass objects
windowLength()
Determine the safety window length of the next cohort
`&`(<Stopping>,<Stopping>)
The method combining two atomic stopping rules
`&`(<Stopping>,<StoppingAll>)
The method combining an atomic and a stopping list
`&`(<StoppingAll>,<Stopping>)
The method combining a stopping list and an atomic