
Package index
-
crmPack-packagecrmPack - Object-oriented implementation of CRM designs
-
Validatestable Validate-
positive_numberexperimental positive_number-
CrmPackClass-class.CrmPackClassCrmPackClassexperimental CrmPackClass-
.DefaultDataGeneral()stable GeneralData-
Data().DefaultData()stable Data-
DataDual().DefaultDataDual()stable DataDual-
DataOrdinal().DefaultDataOrdinal()experimental DataOrdinal-
DataParts().DefaultDataParts()stable DataParts-
DataMixture().DefaultDataMixture()stable DataMixture-
DataDA().DefaultDataDA()stable DataDA-
DataGrouped().DefaultDataGrouped()stable DataGrouped-
McmcOptions().DefaultMcmcOptions()stable McmcOptions-
ModelParamsNormal().DefaultModelParamsNormal()experimental ModelParamsNormal-
.DefaultGeneralModel()stable GeneralModel-
ModelLogNormal().DefaultModelLogNormal()stable ModelLogNormal-
LogisticNormal().DefaultLogisticNormal()stable LogisticNormal-
LogisticLogNormal().DefaultLogisticLogNormal()stable LogisticLogNormal-
LogisticLogNormalSub().DefaultLogisticLogNormalSub()stable LogisticLogNormalSub-
ProbitLogNormal().DefaultProbitLogNormal()stable ProbitLogNormal-
ProbitLogNormalRel().DefaultProbitLogNormalRel()stable ProbitLogNormalRel-
LogisticLogNormalGrouped().DefaultLogisticLogNormalGrouped()experimental LogisticLogNormalGrouped-
LogisticKadane().DefaultLogisticKadane()stable LogisticKadane-
LogisticKadaneBetaGamma().DefaultLogisticKadaneBetaGamma()experimental LogisticKadaneBetaGamma-
LogisticNormalMixture().DefaultLogisticNormalMixture()stable LogisticNormalMixture-
LogisticNormalFixedMixture().DefaultLogisticNormalFixedMixture()stable LogisticNormalFixedMixture-
LogisticLogNormalMixture().DefaultLogisticLogNormalMixture()stable LogisticLogNormalMixture-
DualEndpoint().DefaultDualEndpoint()experimental DualEndpoint-
DualEndpointRW().DefaultDualEndpointRW()experimental DualEndpointRW-
DualEndpointBeta().DefaultDualEndpointBeta()experimental DualEndpointBeta-
DualEndpointEmax().DefaultDualEndpointEmax()experimental DualEndpointEmax-
.DefaultModelPseudo()stable ModelPseudo-
.DefaultModelTox()stable ModelTox-
.DefaultModelEff()stable ModelEff-
LogisticIndepBeta().DefaultLogisticIndepBeta()stable LogisticIndepBeta-
Effloglog().DefaultEffloglog()stable Effloglog-
EffFlexi().DefaultEffFlexi()stable EffFlexi-
DALogisticLogNormal().DefaultDALogisticLogNormal()stable DALogisticLogNormal-
TITELogisticLogNormal().DefaultTITELogisticLogNormal()stable TITELogisticLogNormal-
OneParLogNormalPrior().DefaultOneParLogNormalPrior()stable OneParLogNormalPrior-
OneParExpPrior().DefaultOneParExpPrior()experimental OneParExpPrior-
FractionalCRM().DefaultFractionalCRM()stable FractionalCRM-
Samples().DefaultSamples()stable Samples-
.DefaultNextBest()stable NextBest-
NextBestEWOC().DefaultNextBestEWOC()stable NextBestEWOC-
NextBestMTD().DefaultNextBestMTD()stable NextBestMTD-
NextBestNCRM().DefaultNextBestNCRM()stable NextBestNCRM-
NextBestNCRMLoss().DefaultNextBestNCRMLoss()stable NextBestNCRMLoss-
NextBestThreePlusThree().DefaultNextBestThreePlusThree()stable NextBestThreePlusThree-
NextBestDualEndpoint().DefaultNextBestDualEndpoint()experimental NextBestDualEndpoint-
NextBestMinDist().DefaultNextBestMinDist()stable NextBestMinDist-
NextBestInfTheory().DefaultNextBestInfTheory()stable NextBestInfTheory-
.DefaultNextBestTD()NextBestTD()stable NextBestTD-
NextBestTDsamples().DefaultNextBestTDsamples()stable NextBestTDsamples-
NextBestMaxGain().DefaultNextBestMaxGain()stable NextBestMaxGain-
NextBestMaxGainSamples().DefaultNextBestMaxGainSamples()stable NextBestMaxGainSamples-
NextBestProbMTDLTE().DefaultNextBestProbMTDLTE()experimental NextBestProbMTDLTE-
NextBestProbMTDMinDist().DefaultNextBestProbMTDMinDist()experimental NextBestProbMTDMinDist-
.DefaultIncrements()stable Increments-
IncrementsRelative().DefaultIncrementsRelative()stable IncrementsRelative-
IncrementsRelativeParts().DefaultIncrementsRelativeParts()stable IncrementsRelativeParts-
IncrementsRelativeDLT().DefaultIncrementsRelativeDLT()stable IncrementsRelativeDLT-
IncrementsRelativeDLTCurrent().DefaultIncrementsRelativeDLTCurrent()experimental IncrementsRelativeDLTCurrent-
IncrementsDoseLevels().DefaultIncrementsDoseLevels()stable IncrementsDoseLevels-
IncrementsHSRBeta().DefaultIncrementsHSRBeta()experimental IncrementsHSRBeta-
IncrementsMin().DefaultIncrementsMin()stable IncrementsMin-
IncrementsMaxToxProb().DefaultIncrementsMaxToxProb()experimental IncrementsMaxToxProb-
Stopping-classStoppingstable Stopping-
StoppingMissingDose().DefaultStoppingMissingDose()experimental StoppingMissingDose-
StoppingCohortsNearDose().DefaultStoppingCohortsNearDose()stable StoppingCohortsNearDose-
StoppingPatientsNearDose().DefaultStoppingPatientsNearDose()stable StoppingPatientsNearDose-
StoppingMinCohorts().DefaultStoppingMinCohorts()stable StoppingMinCohorts-
StoppingMinPatients().DefaultStoppingMinPatients()stable StoppingMinPatients-
StoppingTargetProb().DefaultStoppingTargetProb()stable StoppingTargetProb-
StoppingMTDdistribution().DefaultStoppingMTDdistribution()stable StoppingMTDdistribution-
StoppingMTDCV().DefaultStoppingMTDCV()experimental StoppingMTDCV-
StoppingLowestDoseHSRBeta().DefaultStoppingLowestDoseHSRBeta()experimental StoppingLowestDoseHSRBeta-
StoppingTargetBiomarker().DefaultStoppingTargetBiomarker()stable StoppingTargetBiomarker-
StoppingSpecificDose().DefaultStoppingSpecificDose()experimental StoppingSpecificDose-
StoppingHighestDose().DefaultStoppingHighestDose()experimental StoppingHighestDose-
StoppingList().DefaultStoppingList()stable StoppingList-
StoppingAll().DefaultStoppingAll()stable StoppingAll-
StoppingAny().DefaultStoppingAny()stable StoppingAny-
StoppingTDCIRatio().DefaultStoppingTDCIRatio()stable StoppingTDCIRatio-
StoppingMaxGainCIRatio().DefaultStoppingMaxGainCIRatio()stable StoppingMaxGainCIRatio-
StoppingExternal().DefaultStoppingExternal()experimental StoppingExternal-
.DefaultCohortSize()stable CohortSize-
CohortSizeRange().DefaultCohortSizeRange()stable CohortSizeRange-
CohortSizeDLT().DefaultCohortSizeDLT()stable CohortSizeDLT-
CohortSizeConst().DefaultCohortSizeConst()stable CohortSizeConst-
CohortSizeParts().DefaultCohortSizeParts()stable CohortSizeParts-
.DefaultCohortSizeMax()CohortSizeMax()stable CohortSizeMax-
CohortSizeMin().DefaultCohortSizeMin()stable CohortSizeMin-
.DefaultSafetyWindow()stable SafetyWindow-
SafetyWindowSize().DefaultSafetyWindowSize()stable SafetyWindowSize-
SafetyWindowConst().DefaultSafetyWindowConst()stable SafetyWindowConst-
RuleDesign().DefaultRuleDesign()ThreePlusThreeDesign()stable RuleDesign-
Design().DefaultDesign()stable Design-
DesignOrdinal().DefaultDesignOrdinal()experimental DesignOrdinal-
RuleDesignOrdinal().DefaultRuleDesignOrdinal()experimental RuleDesignOrdinal-
DualDesign().DefaultDualDesign()stable DualDesign-
TDsamplesDesign().DefaultTDsamplesDesign()stable TDsamplesDesign-
TDDesign().DefaultTDDesign()stable TDDesign-
DesignGrouped()experimental DesignGrouped
-
h_blind_plot_data() - Helper Function to Blind Plot Data
-
h_convert_ordinal_data()experimental - Convert a Ordinal Data to the Equivalent Binary Data for a Specific Grade
-
h_convert_ordinal_model()experimental - Convert an ordinal CRM model to the Equivalent Binary CRM Model for a Specific Grade
-
h_convert_ordinal_samples()experimental - Convert a Samples Object from an ordinal Model to the Equivalent Samples Object from a Binary Model
-
v_general_data()h_doses_unique_per_cohort()v_data()v_data_dual()v_data_parts()v_data_mixture()v_data_da()v_data_ordinal()v_data_grouped()stable - Internal Helper Functions for Validation of
GeneralDataObjects -
h_all_equivalent()experimental - Comparison with Numerical Tolerance and Without Name Comparison
-
h_plot_data_df()experimental - Preparing Data for Plotting
-
h_plot_data_cohort_lines()experimental - Preparing Cohort Lines for Data Plot
-
h_check_fun_formals()experimental - Checking Formals of a Function
-
h_slots()experimental - Getting the Slots from a S4 Object
-
h_format_number()experimental - Conditional Formatting Using C-style Formats
-
h_rapply()experimental - Recursively Apply a Function to a List
-
h_null_if_na()stable - Getting
NULLforNA -
h_is_positive_definite()experimental - Testing Matrix for Positive Definiteness
-
h_test_named_numeric()stable - Check that an argument is a named vector of type numeric
-
h_in_range()stable - Check which elements are in a given range
-
h_find_interval()stable - Find Interval Numbers or Indices and Return Custom Number For 0.
-
h_validate_combine_results()experimental - Combining S4 Class Validation Results
-
h_jags_add_dummy()experimental - Appending a Dummy Number for Selected Slots in Data
-
h_jags_join_models()stable - Joining
JAGSModels -
h_jags_get_model_inits()experimental - Setting Initial Values for
JAGSModel Parameters -
h_jags_get_data()experimental - Getting Data for
JAGS -
h_jags_write_model()stable - Writing JAGS Model to a File
-
h_jags_extract_samples()stable - Extracting Samples from
JAGSmcarrayObject -
h_model_dual_endpoint_sigma2w()stable - Update
DualEndpointclass model components with regard to biomarker regression variance. -
h_model_dual_endpoint_rho()stable - Update
DualEndpointclass model components with regard to DLT and biomarker correlation. -
h_model_dual_endpoint_sigma2betaw()stable - Update certain components of
DualEndpointmodel with regard to prior variance factor of the random walk. -
h_model_dual_endpoint_beta()stable - Update certain components of
DualEndpointmodel with regard to parameters of the function that models dose-biomarker relationship defined in theDualEndpointBetaclass. -
h_info_theory_dist()experimental - Calculating the Information Theoretic Distance
-
h_next_best_mg_ci()experimental - Credibility Intervals for Max Gain and Target Doses at
nextBest-NextBestMaxGainMethod. -
h_next_best_mg_doses_at_grid()experimental - Get Closest Grid Doses for a Given Target Doses for
nextBest-NextBestMaxGainMethod. -
h_next_best_eligible_doses()experimental - Get Eligible Doses from the Dose Grid.
-
h_next_best_ncrm_loss_plot()experimental - Building the Plot for
nextBest-NextBestNCRMLossMethod. -
h_next_best_tdsamples_plot()experimental - Building the Plot for
nextBest-NextBestTDsamplesMethod. -
h_next_best_td_plot()experimental - Building the Plot for
nextBest-NextBestTDMethod. -
h_next_best_mg_plot()experimental - Building the Plot for
nextBest-NextBestMaxGainMethod. -
h_next_best_mgsamples_plot()experimental - Building the Plot for
nextBest-NextBestMaxGainSamplesMethod. -
h_obtain_dose_grid_range() - Helper Function Containing Common Functionality
-
h_covr_active()h_covr_detrace()h_is_covr_trace()h_covr_detrace_call() - Helpers for stripping expressions of
covr-inserted trace code -
h_default_if_empty()stable - Getting the default value for an empty object
-
h_unpack_stopit() - Helper function to recursively unpack stopping rules and return lists with logical value and label given
-
h_calc_report_label_percentage() - Helper function to calculate percentage of true stopping rules for report label output calculates true column means and converts output into percentages before combining the output with the report label; output is passed to
show()and output with cat to console -
h_validate_common_data_slots() - Helper Function performing validation Common to Data and DataOrdinal
-
h_summarize_add_stats() - Helper function to calculate average across iterations for each additional reporting parameter extracts parameter names as specified by user and averaged the values for each specified parameter to
show()and output with cat to console -
h_determine_dlts() - Helper function to determine the dlts including first separate and placebo condition
-
v_general_data()h_doses_unique_per_cohort()v_data()v_data_dual()v_data_parts()v_data_mixture()v_data_da()v_data_ordinal()v_data_grouped()stable - Internal Helper Functions for Validation of
GeneralDataObjects -
v_mcmc_options()stable - Internal Helper Functions for Validation of
McmcOptionsObjects -
v_model_params_normal()experimental - Internal Helper Functions for Validation of Model Parameters Objects
-
v_general_model()v_model_logistic_kadane()v_model_logistic_kadane_beta_gamma()v_model_logistic_normal_mix()v_model_logistic_normal_fixed_mix()v_model_logistic_log_normal_mix()v_model_dual_endpoint()v_model_dual_endpoint_rw()v_model_dual_endpoint_beta()v_model_dual_endpoint_emax()v_model_logistic_indep_beta()v_model_eff_log_log()v_model_eff_flexi()v_model_da_logistic_log_normal()v_model_tite_logistic_log_normal()v_model_one_par_exp_normal_prior()v_model_one_par_exp_prior()v_logisticlognormalordinal()stable - Internal Helper Functions for Validation of
GeneralModelandModelPseudoObjects -
v_samples() - Internal Helper Functions for Validation of
SamplesObjects -
v_next_best_mtd()v_next_best_ncrm()v_next_best_ncrm_loss()v_next_best_dual_endpoint()v_next_best_min_dist()v_next_best_ewoc()v_next_best_inf_theory()v_next_best_td()v_next_best_td_samples()v_next_best_max_gain_samples()v_next_best_prob_mtd_lte()v_next_best_prob_mtd_min_dist()v_next_best_ordinal()stable - Internal Helper Functions for Validation of
NextBestObjects -
v_increments_relative()v_increments_relative_parts()v_increments_relative_dlt()v_increments_dose_levels()v_increments_hsr_beta()v_increments_min()v_increments_maxtoxprob()v_increments_ordinal()v_cohort_size_ordinal()stable - Internal Helper Functions for Validation of
IncrementsObjects -
v_starting_dose()experimental - Internal Helper Functions for Validation of
StartingDoseObjects -
v_stopping_cohorts_near_dose()v_stopping_patients_near_dose()v_stopping_min_cohorts()v_stopping_min_patients()v_stopping_target_prob()v_stopping_mtd_distribution()v_stopping_mtd_cv()v_stopping_target_biomarker()v_stopping_list()v_stopping_all()v_stopping_tdci_ratio()stable - Internal Helper Functions for Validation of
StoppingObjects -
v_cohort_size_range()v_cohort_size_dlt()v_cohort_size_const()v_cohort_size_parts()v_cohort_size_max()stable - Internal Helper Functions for Validation of
CohortSizeObjects -
v_safety_window_size()v_safety_window_const()stable - Internal Helper Functions for Validation of
SafetyWindowObjects -
v_rule_design()v_rule_design_ordinal()v_design_grouped()stable - Internal Helper Functions for Validation of
RuleDesignObjects -
v_general_simulations()v_simulations()v_dual_simulations()v_da_simulations()stable - Internal Helper Functions for Validation of
GeneralSimulationsObjects -
v_pseudo_simulations()v_pseudo_dual_simulations()v_pseudo_dual_flex_simulations()stable - Internal Helper Functions for Validation of
PseudoSimulationsObjects
-
check_probabilities()assert_probabilities()test_probabilities()expect_probabilities()stable - Check if an argument is a probability vector
-
check_probability()assert_probability()test_probability()expect_probability()stable - Check if an argument is a single probability value
-
check_probability_range()assert_probability_range()test_probability_range()expect_probability_range()stable - Check if an argument is a probability range
-
check_length()assert_length()test_length()stable - Check if vectors are of compatible lengths
-
check_range()assert_range()test_range()expect_range()stable - Check that an argument is a numerical range
-
h_plot_data_dataordinal()plot(<Data>,<missing>)plot(<DataOrdinal>,<missing>)stable - Helper Function for the Plot Method of the Data and DataOrdinal Classes
-
plot(<DataDual>,<missing>)stable - Plot Method for the
DataDualClass -
plot(<DataDA>,<missing>)stable - Plot Method for the
DataDAClass -
update(<Data>)stable - Updating
DataObjects -
update(<DataParts>)stable - Updating
DataPartsObjects -
update(<DataDual>)stable - Updating
DataDualObjects -
update(<DataDA>)stable - Updating
DataDAObjects -
update(<DataOrdinal>)experimental - Updating
DataOrdinalObjects -
getEff()stable - Extracting Efficacy Responses for Subjects Categorized by the DLT
-
ngrid()stable - Number of Doses in Grid
-
dose_grid_range()stable - Getting the Dose Grid Range
-
saveSample()stable - Determining if this Sample Should be Saved
-
size()stable - Size of an Object
-
doseFunction()experimental - Getting the Dose Function for a Given Model Type
-
dose()stable - Computing the Doses for a given independent variable, Model and Samples
-
probFunction()experimental - Getting the Prob Function for a Given Model Type
-
prob()stable - Computing Toxicity Probabilities for a Given Dose, Model and Samples
-
efficacyFunction()experimental - Getting the Efficacy Function for a Given Model Type
-
efficacy()stable - Computing Expected Efficacy for a Given Dose, Model and Samples
-
biomarker()experimental - Get the Biomarker Levels for a Given Dual-Endpoint Model, Given Dose Levels and Samples
-
gain()stable - Compute Gain Values based on Pseudo DLE and a Pseudo Efficacy Models and Using Optional Samples.
-
update(<ModelPseudo>) - Update method for the
ModelPseudomodel class. This is a method to update the model class slots (estimates, parameters, variables and etc.), when the new data (e.g. new observations of responses) are available. This method is mostly used to obtain new modal estimates for pseudo model parameters. -
mcmc()stable - Obtaining Posterior Samples for all Model Parameters
-
names(<Samples>)stable - The Names of the Sampled Parameters
-
nextBest()stable - Finding the Next Best Dose
-
stopTrial()stable - Stop the trial?
-
maxDose()stable - Determine the Maximum Possible Next Dose
-
enable_logging()disable_logging()is_logging_enabled()log_trace()experimental - Verbose Logging
-
dapply()experimental - Apply a Function to Subsets of Data Frame.
-
knit_print(<CohortSizeConst>)knit_print(<CohortSizeRange>)knit_print(<CohortSizeDLT>)knit_print(<CohortSizeParts>)knit_print(<CohortSizeMax>)knit_print(<CohortSizeMin>)knit_print(<CohortSizeOrdinal>)knit_print(<StartingDose>)knit_print(<RuleDesign>)knit_print(<Design>)knit_print(<DualDesign>)knit_print(<DADesign>)knit_print(<TDDesign>)knit_print(<DualResponsesDesign>)knit_print(<DesignOrdinal>)knit_print(<DesignGrouped>)knit_print(<TDsamplesDesign>)knit_print(<DualResponsesSamplesDesign>)knit_print(<RuleDesignOrdinal>)knit_print(<GeneralData>)knit_print(<DataParts>)knit_print(<DualEndpoint>)knit_print(<ModelParamsNormal>)knit_print(<GeneralModel>)knit_print(<LogisticKadane>)knit_print(<LogisticKadaneBetaGamma>)knit_print(<LogisticLogNormal>)knit_print(<LogisticLogNormalMixture>)knit_print(<LogisticLogNormalSub>)knit_print(<LogisticNormalMixture>)knit_print(<LogisticNormalFixedMixture>)knit_print(<OneParLogNormalPrior>)knit_print(<OneParExpPrior>)knit_print(<LogisticLogNormalGrouped>)knit_print(<LogisticLogNormalOrdinal>)knit_print(<LogisticIndepBeta>)knit_print(<Effloglog>)knit_print(<IncrementsRelative>)knit_print(<IncrementsRelativeDLT>)knit_print(<IncrementsDoseLevels>)knit_print(<IncrementsHSRBeta>)knit_print(<IncrementsMin>)knit_print(<IncrementsOrdinal>)knit_print(<IncrementsRelativeParts>)knit_print(<IncrementsRelativeDLTCurrent>)knit_print(<NextBestMTD>)knit_print(<NextBestNCRM>)knit_print(<NextBestThreePlusThree>)knit_print(<NextBestDualEndpoint>)knit_print(<NextBestMinDist>)knit_print(<NextBestInfTheory>)knit_print(<NextBestTD>)knit_print(<NextBestMaxGain>)knit_print(<NextBestProbMTDLTE>)knit_print(<NextBestProbMTDMinDist>)knit_print(<NextBestNCRMLoss>)knit_print(<NextBestTDsamples>)knit_print(<NextBestMaxGainSamples>)knit_print(<NextBestOrdinal>)knit_print(<SafetyWindow>)knit_print(<SafetyWindowConst>)knit_print(<SafetyWindowSize>)knit_print(<StoppingOrdinal>)knit_print(<StoppingMaxGainCIRatio>)knit_print(<StoppingList>)knit_print(<StoppingAny>)knit_print(<StoppingAll>)knit_print(<StoppingTDCIRatio>)knit_print(<StoppingTargetBiomarker>)knit_print(<StoppingLowestDoseHSRBeta>)knit_print(<StoppingMTDCV>)knit_print(<StoppingMTDdistribution>)knit_print(<StoppingHighestDose>)knit_print(<StoppingSpecificDose>)knit_print(<StoppingTargetProb>)knit_print(<StoppingMinCohorts>)knit_print(<StoppingMinPatients>)knit_print(<StoppingPatientsNearDose>)knit_print(<StoppingCohortsNearDose>)knit_print(<StoppingMissingDose>)experimental - Render a
CohortSizeConstObject
-
CohortSizeOrdinal().DefaultCohortSizeOrdinal()experimental CohortSizeOrdinal-
IncrementsOrdinal().DefaultIncrementsOrdinal()experimental IncrementsOrdinal-
DADesign().DefaultDADesign()stable DADesign-
DASimulations().DefaultDASimulations()stable DASimulations-
DualResponsesDesign().DefaultDualResponsesDesign()stable DualResponsesDesign.R-
DualResponsesSamplesDesign().DefaultDualResponsesSamplesDesign()stable DualResponsesSamplesDesign-
DualSimulations().DefaultDualSimulations()stable DualSimulations-
.DefaultDualSimulationsSummary()stable DualSimulationsSummary-
GeneralSimulations().DefaultGeneralSimulations()stable GeneralSimulations-
.DefaultGeneralSimulationsSummary()stable GeneralSimulationsSummary-
IncrementsMaxToxProb().DefaultIncrementsMaxToxProb()experimental IncrementsMaxToxProb-
LogisticLogNormalOrdinal().DefaultLogisticLogNormalOrdinal()experimental LogisticLogNormalOrdinal-
MinimalInformative()stable - Construct a Minimally Informative Prior
-
NextBestOrdinal().DefaultNextBestOrdinal()experimental NextBestOrdinal-
PseudoDualFlexiSimulations().DefaultPseudoDualFlexiSimulations()stable PseudoDualFlexiSimulations-
PseudoDualSimulations().DefaultPseudoDualSimulations()stable PseudoDualSimulations-
.DefaultPseudoDualSimulationsSummary()stable PseudoDualSimulationsSummary-
PseudoSimulations().DefaultPseudoSimulations()stable PseudoSimulations-
.DefaultPseudoSimulationsSummary()stable PseudoSimulationsSummary-
Quantiles2LogisticNormal()stable - Convert Prior Quantiles to Logistic (Log) Normal Model
-
Simulations().DefaultSimulations()stable Simulations-
.DefaultSimulationsSummary()stable SimulationsSummary-
StoppingOrdinal().DefaultStoppingOrdinal()experimental StoppingOrdinal-
approximate() - Approximate posterior with (log) normal distribution
-
assertionsexperimental - Additional Assertions for
checkmate -
check_equal()assert_equal()experimental - Check if All Arguments Are Equal
-
check_format()assert_format()test_format()expect_format()stable - Check that an argument is a valid format specification
-
crmPackExample()stable - Open the Example PDF for crmPack
-
crmPackHelp()stable - Open the Browser with Help Pages for crmPack
-
examine() - Obtain Hypothetical Trial Course Table for a Design
-
fit() - Fit method for the Samples class
-
fitGain() - Get the fitted values for the gain values at all dose levels based on a given pseudo DLE model, DLE sample, a pseudo efficacy model, a Efficacy sample and data. This method returns a data frame with dose, middle, lower and upper quantiles of the gain value samples
-
fitPEM() - Get the fitted DLT free survival (piecewise exponential model). This function returns a data frame with dose, middle, lower and upper quantiles for the
PEMcurve. If hazard=TRUE, -
get(<Samples>,<character>) - Get specific parameter samples and produce a data.frame
-
h_get_min_inf_beta() - Helper for Minimal Informative Unimodal Beta Distribution
-
logit()stable - Shorthand for Logit Function
-
match_within_tolerance()stable - Helper Function for Value Matching with Tolerance
-
maxSize()stable - "MAX" Combination of Cohort Size Rules
-
minSize()stable - "MIN" Combination of Cohort Size Rules
-
`|`(<Stopping>,<Stopping>)stable - Combine Two Stopping Rules with OR
-
`|`(<Stopping>,<StoppingAny>)stable - Combine an Atomic Stopping Rule and a Stopping List with OR
-
`|`(<StoppingAny>,<Stopping>)stable - Combine a Stopping List and an Atomic Stopping Rule with OR
-
plot(<Data>,<ModelTox>) - Plot of the fitted dose-tox based with a given pseudo DLE model and data without samples
-
plot(<DataDual>,<ModelEff>) - Plot of the fitted dose-efficacy based with a given pseudo efficacy model and data without samples
-
plot(<DualSimulations>,<missing>)stable - Plot
DualSimulations -
plot(<DualSimulationsSummary>,<missing>)stable - Plot Dual-Endpoint Design Simulation Summary
-
plot(<GeneralSimulations>,<missing>)stable - Plot
GeneralSimulations -
plot(<GeneralSimulationsSummary>,<missing>)stable - Plot
GeneralSimulationsSummary -
plot(<PseudoDualFlexiSimulations>,<missing>)stable - Plot
PseudoDualFlexiSimulations -
plot(<PseudoDualSimulations>,<missing>)stable - Plot
PseudoDualSimulations -
plot(<PseudoDualSimulationsSummary>,<missing>)stable - Plot
PseudoDualSimulationsSummary -
plot(<PseudoSimulationsSummary>,<missing>)stable - Plot
PseudoSimulationsSummary -
plot(<Samples>,<DALogisticLogNormal>) - Plotting dose-toxicity model fits
-
plot(<Samples>,<DualEndpoint>) - Plotting dose-toxicity and dose-biomarker model fits
-
plot(<Samples>,<GeneralModel>) - Plotting dose-toxicity model fits
-
plot(<Samples>,<ModelEff>) - Plot the fitted dose-efficacy curve using a model from
ModelEffclass with samples -
plot(<Samples>,<ModelTox>) - Plot the fitted dose-DLE curve using a
ModelToxclass model with samples -
plot(<SimulationsSummary>,<missing>)stable - Plot Model-Based Design Simulation Summary
-
plotDualResponses() - Plot of the DLE and efficacy curve side by side given a DLE pseudo model, a DLE sample, an efficacy pseudo model and a given efficacy sample
-
plotGain() - Plot the gain curve in addition with the dose-DLE and dose-efficacy curve using a given DLE pseudo model, a DLE sample, a given efficacy pseudo model and an efficacy sample
-
plot(<gtable>)print(<gtable>)stable - Plot
gtableObjects -
probit()stable - Shorthand for Probit Function
-
set_seed()stable - Helper Function to Set and Save the RNG Seed
-
show(<DualSimulationsSummary>)stable - Show the Summary of Dual-Endpoint Simulations
-
show(<GeneralSimulationsSummary>)stable - Show the Summary of the Simulations
-
show(<PseudoDualSimulationsSummary>)stable - Show the Summary of
PseudoDualSimulations -
show(<PseudoSimulationsSummary>)stable - Show the Summary of
PseudoSimulations -
show(<SimulationsSummary>)stable - Show the Summary of Model-Based Design Simulations
-
simulate(<DADesign>)stable - Simulate outcomes from a time-to-DLT augmented CRM design
-
simulate(<Design>)stable - Simulate outcomes from a CRM design
-
simulate(<DualDesign>)stable - Simulate outcomes from a dual-endpoint design
-
simulate(<DualResponsesDesign>)stable - Simulate dose escalation procedure using both DLE and efficacy responses without samples
-
simulate(<DualResponsesSamplesDesign>)stable - Simulate dose escalation procedure using DLE and efficacy responses with samples
-
simulate(<RuleDesign>)stable - Simulate outcomes from a rule-based design
-
simulate(<TDDesign>)stable - Simulate dose escalation procedure using DLE responses only without samples
-
simulate(<TDsamplesDesign>)stable - Simulate dose escalation procedure using DLE responses only with DLE samples
-
simulate(<DesignGrouped>)experimental - Simulate Method for the
DesignGroupedClass -
summary(<DualSimulations>)stable - Summarize Dual-Endpoint Design Simulations
-
summary(<GeneralSimulations>)stable - Summarize the
GeneralSimulations, Relative to a Given Truth -
summary(<PseudoDualFlexiSimulations>)stable - Summarize
PseudoDualFlexiSimulations -
summary(<PseudoDualSimulations>)stable - Summarize
PseudoDualSimulations -
summary(<Simulations>)stable - Summarize Model-Based Design Simulations
-
summary(<PseudoSimulations>)stable - Summarize
PseudoSimulations -
tidy()experimental - Tidying
CrmPackClassobjects -
windowLength()stable - Determine the Safety Window Length of the Next Cohort
-
`&`(<Stopping>,<Stopping>)stable - Combine Two Stopping Rules with AND
-
`&`(<Stopping>,<StoppingAll>)stable - Combine an Atomic Stopping Rule and a Stopping List with AND
-
`&`(<StoppingAll>,<Stopping>)stable - Combine a Stopping List and an Atomic Stopping Rule with AND