Package index
-
-package
crmPack-package
crmPack
- Object-oriented implementation of CRM designs
-
Validate
stable Validate
-
positive_number
experimental positive_number
-
CrmPackClass-class
.CrmPackClass
CrmPackClass
experimental CrmPackClass
-
.DefaultDataGeneral()
stable GeneralData
-
Data()
.DefaultData()
stable Data
-
DataDual()
.DefaultDataDual()
stable DataDual
-
DataOrdinal()
.DefaultDataOrdinal()
experimental DataOrdinal
-
DataParts()
.DefaultDataParts()
stable DataParts
-
DataMixture()
.DefaultDataMixture()
stable DataMixture
-
DataDA()
.DefaultDataDA()
stable DataDA
-
DataGrouped()
.DefaultDataGrouped()
stable DataGrouped
-
McmcOptions()
.DefaultMcmcOptions()
stable McmcOptions
-
ModelParamsNormal()
.DefaultModelParamsNormal()
experimental ModelParamsNormal
-
.DefaultGeneralModel()
stable GeneralModel
-
ModelLogNormal()
.DefaultModelLogNormal()
stable ModelLogNormal
-
LogisticNormal()
.DefaultLogisticNormal()
stable LogisticNormal
-
LogisticLogNormal()
.DefaultLogisticLogNormal()
stable LogisticLogNormal
-
LogisticLogNormalSub()
.DefaultLogisticLogNormalSub()
stable LogisticLogNormalSub
-
ProbitLogNormal()
.DefaultProbitLogNormal()
stable ProbitLogNormal
-
ProbitLogNormalRel()
.DefaultProbitLogNormalRel()
stable ProbitLogNormalRel
-
LogisticLogNormalGrouped()
.DefaultLogisticLogNormalGrouped()
experimental LogisticLogNormalGrouped
-
LogisticKadane()
.DefaultLogisticKadane()
stable LogisticKadane
-
LogisticKadaneBetaGamma()
.DefaultLogisticKadaneBetaGamma()
experimental LogisticKadaneBetaGamma
-
LogisticNormalMixture()
.DefaultLogisticNormalMixture()
stable LogisticNormalMixture
-
LogisticNormalFixedMixture()
.DefaultLogisticNormalFixedMixture()
stable LogisticNormalFixedMixture
-
LogisticLogNormalMixture()
.DefaultLogisticLogNormalMixture()
stable LogisticLogNormalMixture
-
DualEndpoint()
.DefaultDualEndpoint()
experimental DualEndpoint
-
DualEndpointRW()
.DefaultDualEndpointRW()
experimental DualEndpointRW
-
DualEndpointBeta()
.DefaultDualEndpointBeta()
experimental DualEndpointBeta
-
DualEndpointEmax()
.DefaultDualEndpointEmax()
experimental DualEndpointEmax
-
.DefaultModelPseudo()
stable ModelPseudo
-
.DefaultModelTox()
stable ModelTox
-
.DefaultModelEff()
stable ModelEff
-
LogisticIndepBeta()
.DefaultLogisticIndepBeta()
stable LogisticIndepBeta
-
Effloglog()
.DefaultEffloglog()
stable Effloglog
-
EffFlexi()
.DefaultEffFlexi()
stable EffFlexi
-
DALogisticLogNormal()
.DefaultDALogisticLogNormal()
stable DALogisticLogNormal
-
TITELogisticLogNormal()
.DefaultTITELogisticLogNormal()
stable TITELogisticLogNormal
-
OneParLogNormalPrior()
.DefaultOneParLogNormalPrior()
stable OneParLogNormalPrior
-
OneParExpPrior()
.DefaultOneParExpPrior()
experimental OneParExpPrior
-
FractionalCRM()
.DefaultFractionalCRM()
stable FractionalCRM
-
Samples()
.DefaultSamples()
stable Samples
-
.DefaultNextBest()
stable NextBest
-
NextBestMTD()
.DefaultNextBestMTD()
stable NextBestMTD
-
NextBestNCRM()
.DefaultNextBestNCRM()
stable NextBestNCRM
-
NextBestNCRMLoss()
.DefaultNextBestNCRMLoss()
stable NextBestNCRMLoss
-
NextBestThreePlusThree()
.DefaultNextBestThreePlusThree()
stable NextBestThreePlusThree
-
NextBestDualEndpoint()
.DefaultNextBestDualEndpoint()
experimental NextBestDualEndpoint
-
NextBestMinDist()
.DefaultNextBestMinDist()
stable NextBestMinDist
-
NextBestInfTheory()
.DefaultNextBestInfTheory()
stable NextBestInfTheory
-
.DefaultNextBestTD()
NextBestTD()
stable NextBestTD
-
NextBestTDsamples()
.DefaultNextBestTDsamples()
stable NextBestTDsamples
-
NextBestMaxGain()
.DefaultNextBestMaxGain()
stable NextBestMaxGain
-
NextBestMaxGainSamples()
.DefaultNextBestMaxGainSamples()
stable NextBestMaxGainSamples
-
NextBestProbMTDLTE()
.DefaultNextBestProbMTDLTE()
experimental NextBestProbMTDLTE
-
NextBestProbMTDMinDist()
.DefaultNextBestProbMTDMinDist()
experimental NextBestProbMTDMinDist
-
.DefaultIncrements()
stable Increments
-
IncrementsRelative()
.DefaultIncrementsRelative()
stable IncrementsRelative
-
IncrementsRelativeParts()
.DefaultIncrementsRelativeParts()
stable IncrementsRelativeParts
-
IncrementsRelativeDLT()
.DefaultIncrementsRelativeDLT()
stable IncrementsRelativeDLT
-
IncrementsRelativeDLTCurrent()
.DefaultIncrementsRelativeDLTCurrent()
experimental IncrementsRelativeDLTCurrent
-
IncrementsDoseLevels()
.DefaultIncrementsDoseLevels()
stable IncrementsDoseLevels
-
IncrementsHSRBeta()
.DefaultIncrementsHSRBeta()
experimental IncrementsHSRBeta
-
IncrementsMin()
.DefaultIncrementsMin()
stable IncrementsMin
-
IncrementsMaxToxProb()
.DefaultIncrementsMaxToxProb()
experimental IncrementsMaxToxProb
-
Stopping-class
Stopping
stable Stopping
-
StoppingMissingDose()
.DefaultStoppingMissingDose()
experimental StoppingMissingDose
-
StoppingCohortsNearDose()
.DefaultStoppingCohortsNearDose()
stable StoppingCohortsNearDose
-
StoppingPatientsNearDose()
.DefaultStoppingPatientsNearDose()
stable StoppingPatientsNearDose
-
StoppingMinCohorts()
.DefaultStoppingMinCohorts()
stable StoppingMinCohorts
-
StoppingMinPatients()
.DefaultStoppingMinPatients()
stable StoppingMinPatients
-
StoppingTargetProb()
.DefaultStoppingTargetProb()
stable StoppingTargetProb
-
StoppingMTDdistribution()
.DefaultStoppingMTDdistribution()
stable StoppingMTDdistribution
-
StoppingMTDCV()
.DefaultStoppingMTDCV()
experimental StoppingMTDCV
-
StoppingLowestDoseHSRBeta()
.DefaultStoppingLowestDoseHSRBeta()
experimental StoppingLowestDoseHSRBeta
-
StoppingTargetBiomarker()
.DefaultStoppingTargetBiomarker()
stable StoppingTargetBiomarker
-
StoppingSpecificDose()
.DefaultStoppingSpecificDose()
experimental StoppingSpecificDose
-
StoppingHighestDose()
.DefaultStoppingHighestDose()
experimental StoppingHighestDose
-
StoppingList()
.DefaultStoppingList()
stable StoppingList
-
StoppingAll()
.DefaultStoppingAll()
stable StoppingAll
-
StoppingAny()
.DefaultStoppingAny()
stable StoppingAny
-
StoppingTDCIRatio()
.DefaultStoppingTDCIRatio()
stable StoppingTDCIRatio
-
StoppingMaxGainCIRatio()
.DefaultStoppingMaxGainCIRatio()
stable StoppingMaxGainCIRatio
-
StoppingExternal()
.DefaultStoppingExternal()
experimental StoppingExternal
-
.DefaultCohortSize()
stable CohortSize
-
CohortSizeRange()
.DefaultCohortSizeRange()
stable CohortSizeRange
-
CohortSizeDLT()
.DefaultCohortSizeDLT()
stable CohortSizeDLT
-
CohortSizeConst()
.DefaultCohortSizeConst()
stable CohortSizeConst
-
CohortSizeParts()
.DefaultCohortSizeParts()
stable CohortSizeParts
-
.DefaultCohortSizeMax()
CohortSizeMax()
stable CohortSizeMax
-
CohortSizeMin()
.DefaultCohortSizeMin()
stable CohortSizeMin
-
.DefaultSafetyWindow()
stable SafetyWindow
-
SafetyWindowSize()
.DefaultSafetyWindowSize()
stable SafetyWindowSize
-
SafetyWindowConst()
.DefaultSafetyWindowConst()
stable SafetyWindowConst
-
RuleDesign()
.DefaultRuleDesign()
ThreePlusThreeDesign()
stable RuleDesign
-
Design()
.DefaultDesign()
stable Design
-
DesignOrdinal()
.DefaultDesignOrdinal()
experimental DesignOrdinal
-
RuleDesignOrdinal()
.DefaultRuleDesignOrdinal()
experimental RuleDesignOrdinal
-
DualDesign()
.DefaultDualDesign()
stable DualDesign
-
TDsamplesDesign()
.DefaultTDsamplesDesign()
stable TDsamplesDesign
-
TDDesign()
.DefaultTDDesign()
stable TDDesign
-
DesignGrouped()
experimental DesignGrouped
-
h_blind_plot_data()
- Helper Function to Blind Plot Data
-
h_convert_ordinal_data()
experimental - Convert a Ordinal Data to the Equivalent Binary Data for a Specific Grade
-
h_convert_ordinal_model()
experimental - Convert an ordinal CRM model to the Equivalent Binary CRM Model for a Specific Grade
-
h_convert_ordinal_samples()
experimental - Convert a Samples Object from an ordinal Model to the Equivalent Samples Object from a Binary Model
-
v_general_data()
h_doses_unique_per_cohort()
v_data()
v_data_dual()
v_data_parts()
v_data_mixture()
v_data_da()
v_data_ordinal()
v_data_grouped()
stable - Internal Helper Functions for Validation of
GeneralData
Objects
-
h_all_equivalent()
experimental - Comparison with Numerical Tolerance and Without Name Comparison
-
h_plot_data_df()
experimental - Preparing Data for Plotting
-
h_plot_data_cohort_lines()
experimental - Preparing Cohort Lines for Data Plot
-
h_check_fun_formals()
experimental - Checking Formals of a Function
-
h_slots()
experimental - Getting the Slots from a S4 Object
-
h_format_number()
experimental - Conditional Formatting Using C-style Formats
-
h_rapply()
experimental - Recursively Apply a Function to a List
-
h_null_if_na()
stable - Getting
NULL
forNA
-
h_is_positive_definite()
experimental - Testing Matrix for Positive Definiteness
-
h_test_named_numeric()
stable - Check that an argument is a named vector of type numeric
-
h_in_range()
stable - Check which elements are in a given range
-
h_find_interval()
stable - Find Interval Numbers or Indices and Return Custom Number For 0.
-
h_validate_combine_results()
experimental - Combining S4 Class Validation Results
-
h_jags_add_dummy()
experimental - Appending a Dummy Number for Selected Slots in Data
-
h_jags_join_models()
stable - Joining
JAGS
Models
-
h_jags_get_model_inits()
experimental - Setting Initial Values for
JAGS
Model Parameters
-
h_jags_get_data()
experimental - Getting Data for
JAGS
-
h_jags_write_model()
stable - Writing JAGS Model to a File
-
h_jags_extract_samples()
stable - Extracting Samples from
JAGS
mcarray
Object
-
h_model_dual_endpoint_sigma2W()
stable - Update
DualEndpoint
class model components with regard to biomarker regression variance.
-
h_model_dual_endpoint_rho()
stable - Update
DualEndpoint
class model components with regard to DLT and biomarker correlation.
-
h_model_dual_endpoint_sigma2betaW()
stable - Update certain components of
DualEndpoint
model with regard to prior variance factor of the random walk.
-
h_model_dual_endpoint_beta()
stable - Update certain components of
DualEndpoint
model with regard to parameters of the function that models dose-biomarker relationship defined in theDualEndpointBeta
class.
-
h_info_theory_dist()
experimental - Calculating the Information Theoretic Distance
-
h_next_best_mg_ci()
experimental - Credibility Intervals for Max Gain and Target Doses at
nextBest-NextBestMaxGain
Method.
-
h_next_best_mg_doses_at_grid()
experimental - Get Closest Grid Doses for a Given Target Doses for
nextBest-NextBestMaxGain
Method.
-
h_next_best_eligible_doses()
experimental - Get Eligible Doses from the Dose Grid.
-
h_next_best_ncrm_loss_plot()
experimental - Building the Plot for
nextBest-NextBestNCRMLoss
Method.
-
h_next_best_tdsamples_plot()
experimental - Building the Plot for
nextBest-NextBestTDsamples
Method.
-
h_next_best_td_plot()
experimental - Building the Plot for
nextBest-NextBestTD
Method.
-
h_next_best_mg_plot()
experimental - Building the Plot for
nextBest-NextBestMaxGain
Method.
-
h_next_best_mgsamples_plot()
experimental - Building the Plot for
nextBest-NextBestMaxGainSamples
Method.
-
h_obtain_dose_grid_range()
- Helper Function Containing Common Functionality
-
h_covr_active()
h_covr_detrace()
h_is_covr_trace()
h_covr_detrace_call()
- Helpers for stripping expressions of
covr
-inserted trace code
-
h_default_if_empty()
stable - Getting the default value for an empty object
-
h_unpack_stopit()
- Helper function to recursively unpack stopping rules and return lists with logical value and label given
-
h_calc_report_label_percentage()
- Helper function to calculate percentage of true stopping rules for report label output calculates true column means and converts output into percentages before combining the output with the report label; output is passed to
show()
and output with cat to console
-
h_validate_common_data_slots()
- Helper Function performing validation Common to Data and DataOrdinal
-
h_summarize_add_stats()
- Helper function to calculate average across iterations for each additional reporting parameter extracts parameter names as specified by user and averaged the values for each specified parameter to
show()
and output with cat to console
-
h_determine_dlts()
- Helper function to determine the dlts including first separate and placebo condition
-
v_general_data()
h_doses_unique_per_cohort()
v_data()
v_data_dual()
v_data_parts()
v_data_mixture()
v_data_da()
v_data_ordinal()
v_data_grouped()
stable - Internal Helper Functions for Validation of
GeneralData
Objects
-
v_mcmc_options()
stable - Internal Helper Functions for Validation of
McmcOptions
Objects
-
v_model_params_normal()
experimental - Internal Helper Functions for Validation of Model Parameters Objects
-
v_general_model()
v_model_logistic_kadane()
v_model_logistic_kadane_beta_gamma()
v_model_logistic_normal_mix()
v_model_logistic_normal_fixed_mix()
v_model_logistic_log_normal_mix()
v_model_dual_endpoint()
v_model_dual_endpoint_rw()
v_model_dual_endpoint_beta()
v_model_dual_endpoint_emax()
v_model_logistic_indep_beta()
v_model_eff_log_log()
v_model_eff_flexi()
v_model_da_logistic_log_normal()
v_model_tite_logistic_log_normal()
v_model_one_par_exp_normal_prior()
v_model_one_par_exp_prior()
v_logisticlognormalordinal()
stable - Internal Helper Functions for Validation of
GeneralModel
andModelPseudo
Objects
-
v_samples()
- Internal Helper Functions for Validation of
Samples
Objects
-
v_next_best_mtd()
v_next_best_ncrm()
v_next_best_ncrm_loss()
v_next_best_dual_endpoint()
v_next_best_min_dist()
v_next_best_inf_theory()
v_next_best_td()
v_next_best_td_samples()
v_next_best_max_gain_samples()
v_next_best_prob_mtd_lte()
v_next_best_prob_mtd_min_dist()
v_next_best_ordinal()
stable - Internal Helper Functions for Validation of
NextBest
Objects
-
v_increments_relative()
v_increments_relative_parts()
v_increments_relative_dlt()
v_increments_dose_levels()
v_increments_hsr_beta()
v_increments_min()
v_increments_maxtoxprob()
v_increments_ordinal()
v_cohort_size_ordinal()
stable - Internal Helper Functions for Validation of
Increments
Objects
-
v_starting_dose()
experimental - Internal Helper Functions for Validation of
StartingDose
Objects
-
v_stopping_cohorts_near_dose()
v_stopping_patients_near_dose()
v_stopping_min_cohorts()
v_stopping_min_patients()
v_stopping_target_prob()
v_stopping_mtd_distribution()
v_stopping_mtd_cv()
v_stopping_target_biomarker()
v_stopping_list()
v_stopping_all()
v_stopping_tdci_ratio()
stable - Internal Helper Functions for Validation of
Stopping
Objects
-
v_cohort_size_range()
v_cohort_size_dlt()
v_cohort_size_const()
v_cohort_size_parts()
v_cohort_size_max()
stable - Internal Helper Functions for Validation of
CohortSize
Objects
-
v_safety_window_size()
v_safety_window_const()
stable - Internal Helper Functions for Validation of
SafetyWindow
Objects
-
v_rule_design()
v_rule_design_ordinal()
v_design_grouped()
stable - Internal Helper Functions for Validation of
RuleDesign
Objects
-
v_general_simulations()
v_simulations()
v_dual_simulations()
v_da_simulations()
stable - Internal Helper Functions for Validation of
GeneralSimulations
Objects
-
v_pseudo_simulations()
v_pseudo_dual_simulations()
v_pseudo_dual_flex_simulations()
stable - Internal Helper Functions for Validation of
PseudoSimulations
Objects
-
check_probabilities()
assert_probabilities()
test_probabilities()
expect_probabilities()
stable - Check if an argument is a probability vector
-
check_probability()
assert_probability()
test_probability()
expect_probability()
stable - Check if an argument is a single probability value
-
check_probability_range()
assert_probability_range()
test_probability_range()
expect_probability_range()
stable - Check if an argument is a probability range
-
check_length()
assert_length()
test_length()
stable - Check if vectors are of compatible lengths
-
check_range()
assert_range()
test_range()
expect_range()
stable - Check that an argument is a numerical range
-
h_plot_data_dataordinal()
plot(<Data>,<missing>)
plot(<DataOrdinal>,<missing>)
stable - Helper Function for the Plot Method of the Data and DataOrdinal Classes
-
plot(<DataDual>,<missing>)
stable - Plot Method for the
DataDual
Class
-
plot(<DataDA>,<missing>)
stable - Plot Method for the
DataDA
Class
-
update(<Data>)
stable - Updating
Data
Objects
-
update(<DataParts>)
stable - Updating
DataParts
Objects
-
update(<DataDual>)
stable - Updating
DataDual
Objects
-
update(<DataDA>)
stable - Updating
DataDA
Objects
-
update(<DataOrdinal>)
experimental - Updating
DataOrdinal
Objects
-
getEff()
stable - Extracting Efficacy Responses for Subjects Categorized by the DLT
-
ngrid()
stable - Number of Doses in Grid
-
dose_grid_range()
stable - Getting the Dose Grid Range
-
saveSample()
stable - Determining if this Sample Should be Saved
-
size()
stable - Size of an Object
-
doseFunction()
experimental - Getting the Dose Function for a Given Model Type
-
dose()
stable - Computing the Doses for a given independent variable, Model and Samples
-
probFunction()
experimental - Getting the Prob Function for a Given Model Type
-
prob()
stable - Computing Toxicity Probabilities for a Given Dose, Model and Samples
-
efficacyFunction()
experimental - Getting the Efficacy Function for a Given Model Type
-
efficacy()
stable - Computing Expected Efficacy for a Given Dose, Model and Samples
-
biomarker()
experimental - Get the Biomarker Levels for a Given Dual-Endpoint Model, Given Dose Levels and Samples
-
gain()
stable - Compute Gain Values based on Pseudo DLE and a Pseudo Efficacy Models and Using Optional Samples.
-
update(<ModelPseudo>)
- Update method for the
ModelPseudo
model class. This is a method to update the model class slots (estimates, parameters, variables and etc.), when the new data (e.g. new observations of responses) are available. This method is mostly used to obtain new modal estimates for pseudo model parameters.
-
mcmc()
stable - Obtaining Posterior Samples for all Model Parameters
-
names(<Samples>)
stable - The Names of the Sampled Parameters
-
nextBest()
stable - Finding the Next Best Dose
-
stopTrial()
stable - Stop the trial?
-
maxDose()
stable - Determine the Maximum Possible Next Dose
-
enable_logging()
disable_logging()
is_logging_enabled()
log_trace()
experimental - Verbose Logging
-
dapply()
experimental - Apply a Function to Subsets of Data Frame.
-
knit_print(<CohortSizeConst>)
knit_print(<CohortSizeRange>)
knit_print(<CohortSizeDLT>)
knit_print(<CohortSizeParts>)
knit_print(<CohortSizeMax>)
knit_print(<CohortSizeMin>)
knit_print(<CohortSizeOrdinal>)
knit_print(<StartingDose>)
knit_print(<RuleDesign>)
knit_print(<Design>)
knit_print(<DualDesign>)
knit_print(<DADesign>)
knit_print(<TDDesign>)
knit_print(<DualResponsesDesign>)
knit_print(<DesignOrdinal>)
knit_print(<DesignGrouped>)
knit_print(<TDsamplesDesign>)
knit_print(<DualResponsesSamplesDesign>)
knit_print(<RuleDesignOrdinal>)
knit_print(<GeneralData>)
knit_print(<DataParts>)
knit_print(<DualEndpoint>)
knit_print(<ModelParamsNormal>)
knit_print(<GeneralModel>)
knit_print(<LogisticKadane>)
knit_print(<LogisticKadaneBetaGamma>)
knit_print(<LogisticLogNormal>)
knit_print(<LogisticLogNormalMixture>)
knit_print(<LogisticLogNormalSub>)
knit_print(<LogisticNormalMixture>)
knit_print(<LogisticNormalFixedMixture>)
knit_print(<OneParLogNormalPrior>)
knit_print(<OneParExpPrior>)
knit_print(<LogisticLogNormalGrouped>)
knit_print(<LogisticLogNormalOrdinal>)
knit_print(<LogisticIndepBeta>)
knit_print(<Effloglog>)
knit_print(<IncrementsRelative>)
knit_print(<IncrementsRelativeDLT>)
knit_print(<IncrementsDoseLevels>)
knit_print(<IncrementsHSRBeta>)
knit_print(<IncrementsMin>)
knit_print(<IncrementsOrdinal>)
knit_print(<IncrementsRelativeParts>)
knit_print(<IncrementsRelativeDLTCurrent>)
knit_print(<NextBestMTD>)
knit_print(<NextBestNCRM>)
knit_print(<NextBestThreePlusThree>)
knit_print(<NextBestDualEndpoint>)
knit_print(<NextBestMinDist>)
knit_print(<NextBestInfTheory>)
knit_print(<NextBestTD>)
knit_print(<NextBestMaxGain>)
knit_print(<NextBestProbMTDLTE>)
knit_print(<NextBestProbMTDMinDist>)
knit_print(<NextBestNCRMLoss>)
knit_print(<NextBestTDsamples>)
knit_print(<NextBestMaxGainSamples>)
knit_print(<NextBestOrdinal>)
knit_print(<SafetyWindow>)
knit_print(<SafetyWindowConst>)
knit_print(<SafetyWindowSize>)
knit_print(<StoppingOrdinal>)
knit_print(<StoppingMaxGainCIRatio>)
knit_print(<StoppingList>)
knit_print(<StoppingAny>)
knit_print(<StoppingAll>)
knit_print(<StoppingTDCIRatio>)
knit_print(<StoppingTargetBiomarker>)
knit_print(<StoppingLowestDoseHSRBeta>)
knit_print(<StoppingMTDCV>)
knit_print(<StoppingMTDdistribution>)
knit_print(<StoppingHighestDose>)
knit_print(<StoppingSpecificDose>)
knit_print(<StoppingTargetProb>)
knit_print(<StoppingMinCohorts>)
knit_print(<StoppingMinPatients>)
knit_print(<StoppingPatientsNearDose>)
knit_print(<StoppingCohortsNearDose>)
knit_print(<StoppingMissingDose>)
experimental - Render a
CohortSizeConst
Object
-
CohortSizeOrdinal()
.DefaultCohortSizeOrdinal()
experimental CohortSizeOrdinal
-
IncrementsOrdinal()
.DefaultIncrementsOrdinal()
experimental IncrementsOrdinal
-
DADesign()
.DefaultDADesign()
stable DADesign
-
.DefaultDASimulations()
- Class for the simulations output from DA based designs
-
DASimulations()
- Initialization function for
DASimulations
-
DualResponsesDesign()
.DefaultDualResponsesDesign()
stable DualResponsesDesign.R
-
DualResponsesSamplesDesign()
.DefaultDualResponsesSamplesDesign()
stable DualResponsesSamplesDesign
-
DualSimulations()
.DefaultDualSimulations()
stable DualSimulations
-
.DefaultDualSimulationsSummary()
stable DualSimulationsSummary
-
GeneralSimulations()
.DefaultGeneralSimulations()
stable GeneralSimulations
@description This class captures trial simulations. Here also the random generator state before starting the simulation is saved, in order to be able to reproduce the outcome. For this just useset.seed
with theseed
as argument before runningsimulate,Design-method
.
-
.DefaultGeneralSimulationsSummary()
.DefaultPseudoSimulationsSummary()
stable GeneralSimulationsSummary
-
IncrementsMaxToxProb()
.DefaultIncrementsMaxToxProb()
experimental IncrementsMaxToxProb
-
LogisticLogNormalOrdinal()
.DefaultLogisticLogNormalOrdinal()
experimental LogisticLogNormalOrdinal
-
MinimalInformative()
- Construct a minimally informative prior
-
NextBestOrdinal()
.DefaultNextBestOrdinal()
experimental NextBestOrdinal
-
.DefaultPseudoDualFlexiSimulations()
- This is a class which captures the trial simulations design using both the DLE and efficacy responses. The design of model from
ModelTox
class and the efficacy model fromEffFlexi
class It contains all slots fromGeneralSimulations
,PseudoSimulations
andPseudoDualSimulations
object. In comparison to the parent classPseudoDualSimulations
, it contains additional slots to capture the sigma2betaW estimates.
-
PseudoDualFlexiSimulations()
- Initialization function for 'PseudoDualFlexiSimulations' class
-
PseudoDualSimulations()
.DefaultPseudoDualSimulations()
stable PseudoDualSimulations
-
.DefaultPseudoDualSimulationsSummary()
- Class for the summary of the dual responses simulations using pseudo models
-
PseudoSimulations()
.DefaultPseudoSimulations()
stable PseudoSimulations
-
PseudoSimulationsSummary-class
.PseudoSimulationsSummary
- Class for the summary of pseudo-models simulations output
-
Quantiles2LogisticNormal()
- Convert prior quantiles (lower, median, upper) to logistic (log) normal model
-
Report
- A Reference Class to represent sequentially updated reporting objects.
-
Simulations()
.DefaultSimulations()
stable Simulations
-
.DefaultSimulationsSummary()
stable SimulationsSummary
-
StoppingOrdinal()
.DefaultStoppingOrdinal()
experimental StoppingOrdinal
-
approximate()
- Approximate posterior with (log) normal distribution
-
assertions
experimental - Additional Assertions for
checkmate
-
check_equal()
assert_equal()
experimental - Check if All Arguments Are Equal
-
check_format()
assert_format()
test_format()
expect_format()
stable - Check that an argument is a valid format specification
-
crmPackExample()
- Open the example pdf for crmPack
-
crmPackHelp()
- Open the browser with help pages for crmPack
-
examine()
- Obtain hypothetical trial course table for a design
-
fit()
- Fit method for the Samples class
-
fitGain()
- Get the fitted values for the gain values at all dose levels based on a given pseudo DLE model, DLE sample, a pseudo efficacy model, a Efficacy sample and data. This method returns a data frame with dose, middle, lower and upper quantiles of the gain value samples
-
fitPEM()
- Get the fitted DLT free survival (piecewise exponential model). This function returns a data frame with dose, middle, lower and upper quantiles for the
PEM
curve. If hazard=TRUE,
-
get(<Samples>,<character>)
- Get specific parameter samples and produce a data.frame
-
h_get_min_inf_beta()
- Helper for Minimal Informative Unimodal Beta Distribution
-
logit()
- Shorthand for logit function
-
match_within_tolerance()
- Helper function for value matching with tolerance
-
maxSize()
- "MAX" combination of cohort size rules
-
minSize()
- "MIN" combination of cohort size rules
-
`|`(<Stopping>,<Stopping>)
- The method combining two atomic stopping rules
-
`|`(<StoppingAny>,<Stopping>)
- The method combining a stopping list and an atomic
-
`|`(<Stopping>,<StoppingAny>)
- The method combining an atomic and a stopping list
-
plot(<Data>,<ModelTox>)
- Plot of the fitted dose-tox based with a given pseudo DLE model and data without samples
-
plot(<DataDual>,<ModelEff>)
- Plot of the fitted dose-efficacy based with a given pseudo efficacy model and data without samples
-
plot(<DualSimulations>,<missing>)
- Plot dual-endpoint simulations
-
plot(<DualSimulationsSummary>,<missing>)
- Plot summaries of the dual-endpoint design simulations
-
plot(<GeneralSimulations>,<missing>)
- Plot simulations
-
plot(<GeneralSimulationsSummary>,<missing>)
- Graphical display of the general simulation summary
-
plot(<PseudoDualFlexiSimulations>,<missing>)
- This plot method can be applied to
PseudoDualFlexiSimulations
objects in order to summarize them graphically. Possibletype
s of plots at the moment are:- trajectory
Summary of the trajectory of the simulated trials
- dosesTried
Average proportions of the doses tested in patients
- sigma2
The variance of the efficacy responses
- sigma2betaW
The variance of the random walk model
type
argument.
-
plot(<PseudoDualSimulations>,<missing>)
- Plot simulations
-
plot(<PseudoDualSimulationsSummary>,<missing>)
- Plot the summary of Pseudo Dual Simulations summary
-
plot(<PseudoSimulationsSummary>,<missing>)
- Plot summaries of the pseudo simulations
-
plot(<Samples>,<DALogisticLogNormal>)
- Plotting dose-toxicity model fits
-
plot(<Samples>,<DualEndpoint>)
- Plotting dose-toxicity and dose-biomarker model fits
-
plot(<Samples>,<GeneralModel>)
- Plotting dose-toxicity model fits
-
plot(<Samples>,<ModelEff>)
- Plot the fitted dose-efficacy curve using a model from
ModelEff
class with samples
-
plot(<Samples>,<ModelTox>)
- Plot the fitted dose-DLE curve using a
ModelTox
class model with samples
-
plot(<SimulationsSummary>,<missing>)
- Plot summaries of the model-based design simulations
-
plotDualResponses()
- Plot of the DLE and efficacy curve side by side given a DLE pseudo model, a DLE sample, an efficacy pseudo model and a given efficacy sample
-
plotGain()
- Plot the gain curve in addition with the dose-DLE and dose-efficacy curve using a given DLE pseudo model, a DLE sample, a given efficacy pseudo model and an efficacy sample
-
plot(<gtable>)
print(<gtable>)
- Plot
gtable
Objects
-
probit()
- Shorthand for probit function
-
set_seed()
stable - Helper Function to Set and Save the RNG Seed
-
show(<DualSimulationsSummary>)
- Show the summary of the dual-endpoint simulations
-
show(<GeneralSimulationsSummary>)
- Show the summary of the simulations
-
show(<PseudoDualSimulationsSummary>)
- Show the summary of Pseudo Dual simulations summary
-
show(<PseudoSimulationsSummary>)
- Show the summary of the simulations
-
show(<SimulationsSummary>)
- Show the summary of the simulations
-
simulate(<DADesign>)
- Simulate outcomes from a time-to-DLT augmented CRM design (
DADesign
)
-
simulate(<Design>)
- Simulate outcomes from a CRM design
-
simulate(<DualDesign>)
- Simulate outcomes from a dual-endpoint design
-
simulate(<DualResponsesDesign>)
- This is a methods to simulate dose escalation procedure using both DLE and efficacy responses. This is a method based on the
DualResponsesDesign
where DLEmodel used are ofModelTox
class object and efficacy model used are ofModelEff
class object. In addition, no DLE and efficacy samples are involved or generated in the simulation process
-
simulate(<DualResponsesSamplesDesign>)
- This is a methods to simulate dose escalation procedure using both DLE and efficacy responses. This is a method based on the
DualResponsesSamplesDesign
where DLEmodel used are ofModelTox
class object and efficacy model used are ofModelEff
class object (special case isEffFlexi
class model object). In addition, DLE and efficacy samples are involved or generated in the simulation process
-
simulate(<RuleDesign>)
- Simulate outcomes from a rule-based design
-
simulate(<TDDesign>)
- This is a methods to simulate dose escalation procedure only using the DLE responses. This is a method based on the
TDDesign
where model used are ofModelTox
class object and no samples are involved.
-
simulate(<TDsamplesDesign>)
- This is a methods to simulate dose escalation procedure only using the DLE responses. This is a method based on the
TDsamplesDesign
where model used are ofModelTox
class object DLE samples are also used
-
simulate(<DesignGrouped>)
experimental - Simulate Method for the
DesignGrouped
Class
-
summary(<DualSimulations>)
- Summarize the dual-endpoint design simulations, relative to given true dose-toxicity and dose-biomarker curves
-
summary(<GeneralSimulations>)
- Summarize the simulations, relative to a given truth
-
summary(<PseudoDualFlexiSimulations>)
- Summary for Pseudo Dual responses simulations given a pseudo DLE model and the Flexible efficacy model.
-
summary(<PseudoDualSimulations>)
- Summary for Pseudo Dual responses simulations, relative to a given pseudo DLE and efficacy model (except the EffFlexi class model)
-
summary(<Simulations>)
- Summarize the model-based design simulations, relative to a given truth
-
summary(<PseudoSimulations>)
- Summarize the simulations, relative to a given truth
-
tidy()
experimental - Tidying
CrmPackClass
objects
-
windowLength()
- Determine the safety window length of the next cohort
-
`&`(<Stopping>,<Stopping>)
- The method combining two atomic stopping rules
-
`&`(<Stopping>,<StoppingAll>)
- The method combining an atomic and a stopping list
-
`&`(<StoppingAll>,<Stopping>)
- The method combining a stopping list and an atomic