Skip to contents

[Stable]

ProbitLogNormalRel is the class for probit regression model with a bivariate normal prior on the intercept and log slope.

Usage

ProbitLogNormalRel(mean, cov, ref_dose = 1)

.DefaultProbitLogNormalRel()

Arguments

mean

(numeric)
the prior mean vector.

cov

(matrix)
the prior covariance matrix. The precision matrix prec is internally calculated as an inverse of cov.

ref_dose

(number)
the reference dose \(x*\) (strictly positive number).

Details

The covariate is the dose \(x\) divided by a reference dose \(x*\), i.e.: $$probit[p(x)] = alpha0 + alpha1 * x/x*,$$ where \(p(x)\) is the probability of observing a DLT for a given dose \(x\). The prior $$(alpha0, log(alpha1)) ~ Normal(mean, cov).$$

Note

This model is also used in the DualEndpoint classes, so this class can be used to check the prior assumptions on the dose-toxicity model, even when sampling from the prior distribution of the dual endpoint model is not possible.

Typically, end users will not use the .DefaultProbitLogNormalRel() function.

Examples

my_model <- ProbitLogNormalRel(
  mean = c(-0.85, 1),
  cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2)
)