Extract the Akaike information criterion (AIC) of a progression model for repeated measures (PMRM).
Usage
# S3 method for class 'pmrm_fit'
AIC(object, ..., k = NULL)See also
Other model comparison:
BIC.pmrm_fit(),
confint.pmrm_fit(),
deviance.pmrm_fit(),
glance.pmrm_fit(),
logLik.pmrm_fit(),
summary.pmrm_fit()
Examples
set.seed(0L)
simulation <- pmrm_simulate_decline_proportional(
visit_times = seq_len(5L) - 1,
gamma = c(1, 2)
)
fit <- pmrm_model_decline_proportional(
data = simulation,
outcome = "y",
time = "t",
patient = "patient",
visit = "visit",
arm = "arm",
covariates = ~ w_1 + w_2
)
AIC(fit)
#> [1] 4276.847
