Return a one-row tibble of model comparison metrics
for a fitted PMRM.
Usage
# S3 method for class 'pmrm_fit'
glance(x, ...)Value
A tibble with one row and columns with the following columns:
model:"decline"or"slowing".parameterization:"proportional"or"nonproportional".n_observations: number of non-missing observations in the data.n_parameters: number of true model parameters.log_likelihood: maximized log likelihood of the model fit.deviance: deviance of the fitted model, defined here as-2 * log_likelihood.aic: Akaike information criterion.bic: Bayesian information criterion.
This format is designed for easy comparison of multiple fitted models.
See also
Other model comparison:
AIC.pmrm_fit(),
BIC.pmrm_fit(),
confint.pmrm_fit(),
deviance.pmrm_fit(),
logLik.pmrm_fit(),
summary.pmrm_fit()
Examples
set.seed(0L)
simulation <- pmrm_simulate_decline_proportional(
visit_times = seq_len(5L) - 1,
gamma = c(1, 2)
)
fit <- pmrm_model_decline_proportional(
data = simulation,
outcome = "y",
time = "t",
patient = "patient",
visit = "visit",
arm = "arm",
covariates = ~ w_1 + w_2
)
glance(fit)
#> # A tibble: 1 × 8
#> model parameterization n_observations n_parameters log_likelihood deviance
#> <chr> <chr> <int> <int> <dbl> <dbl>
#> 1 decline proportional 1500 24 -2114. 4229.
#> # ℹ 2 more variables: aic <dbl>, bic <dbl>
