Compute confidence intervals of the family of model
parameters specified in parm.
Usage
# S3 method for class 'pmrm_fit'
confint(object, parm = NULL, level = 0.95, ...)Value
A numeric matrix with one row for each treatment effect
parameter (theta) and named columns with the lower and upper
bounds of 2-sided confidence intervals on the parameters.
Details
See vignette("models", package = "pmrm") for details.
See also
Other model comparison:
AIC.pmrm_fit(),
BIC.pmrm_fit(),
deviance.pmrm_fit(),
glance.pmrm_fit(),
logLik.pmrm_fit(),
summary.pmrm_fit()
Examples
set.seed(0L)
simulation <- pmrm_simulate_decline_proportional(
visit_times = seq_len(5L) - 1,
gamma = c(1, 2)
)
fit <- pmrm_model_decline_proportional(
data = simulation,
outcome = "y",
time = "t",
patient = "patient",
visit = "visit",
arm = "arm",
covariates = ~ w_1 + w_2
)
confint(fit)
#> 2.5 % 97.5 %
#> arm_2 0.0491933 0.2607419
#> arm_3 0.1190821 0.3252943
