Skip to contents

Get Portfolio configuration from a dataframe aggregated on patient level with max_ae and max_visit. Will filter studies with only a few sites and patients and will anonymize IDs. Portfolio configuration can be used by sim_test_data_portfolio to generate data for an artificial portfolio.

Usage

get_config(
  df_site,
  min_pat_per_study = 100,
  min_sites_per_study = 10,
  anonymize = TRUE,
  pad_width = 4
)

Arguments

df_site

dataframe aggregated on patient level with max_ae and max_visit

min_pat_per_study

minimum number of patients per study, Default: 100

min_sites_per_study

minimum number of sites per study, Default: 10

anonymize

logical, Default: TRUE

pad_width

padding width for newly created IDs, Default: 4

Value

dataframe with the following columns:

study_id

study identification

ae_per_visit_mean

mean AE per visit per study

site_number

site

max_visit_sd

standard deviation of maximum patient visits per site

max_visit_mean

mean of maximum patient visits per site

n_pat

number of patients

Examples

# \donttest{
df_visit1 <- sim_test_data_study(n_pat = 100, n_sites = 10,
                                 frac_site_with_ur = 0.4, ur_rate = 0.6)

df_visit1$study_id <- "A"

df_visit2 <- sim_test_data_study(n_pat = 100, n_sites = 10,
                                 frac_site_with_ur = 0.2, ur_rate = 0.1)

df_visit2$study_id <- "B"

df_visit <- dplyr::bind_rows(df_visit1, df_visit2)

df_site_max <- df_visit %>%
  dplyr::group_by(study_id, site_number, patnum) %>%
  dplyr::summarise(max_visit = max(visit),
            max_ae = max(n_ae),
            .groups = "drop")

df_config <- get_config(df_site_max)

df_config
#> # A tibble: 20 × 6
#>    study_id ae_per_visit_mean site_number max_visit_sd max_visit_mean n_pat
#>    <chr>                <dbl> <chr>              <dbl>          <dbl> <int>
#>  1 0001                 0.402 0001                4.98           18.2    10
#>  2 0001                 0.402 0002                2.92           20.5    10
#>  3 0001                 0.402 0003                3.77           21.2    10
#>  4 0001                 0.402 0004                3.81           20.9    10
#>  5 0001                 0.402 0005                4.19           21      10
#>  6 0001                 0.402 0006                4.23           18.9    10
#>  7 0001                 0.402 0007                4.41           18.1    10
#>  8 0001                 0.402 0008                4.53           19.9    10
#>  9 0001                 0.402 0009                4.52           19.2    10
#> 10 0001                 0.402 0010                4.47           18.8    10
#> 11 0002                 0.485 0001                2.98           20.3    10
#> 12 0002                 0.485 0002                3.34           20.6    10
#> 13 0002                 0.485 0003                3.51           19.1    10
#> 14 0002                 0.485 0004                5.32           19.4    10
#> 15 0002                 0.485 0005                3.77           19.2    10
#> 16 0002                 0.485 0006                4.37           18.8    10
#> 17 0002                 0.485 0007                5.60           20.3    10
#> 18 0002                 0.485 0008                3.57           21.4    10
#> 19 0002                 0.485 0009                3.98           17.6    10
#> 20 0002                 0.485 0010                2.67           19      10

df_portf <- sim_test_data_portfolio(df_config)

df_portf
#> # A tibble: 3,844 × 8
#>    study_id ae_per_visit_mean site_number max_visit_sd max_visit_mean patnum
#>    <chr>                <dbl> <chr>              <dbl>          <dbl> <chr> 
#>  1 0001                 0.402 0001                4.98           18.2 0001  
#>  2 0001                 0.402 0001                4.98           18.2 0001  
#>  3 0001                 0.402 0001                4.98           18.2 0001  
#>  4 0001                 0.402 0001                4.98           18.2 0001  
#>  5 0001                 0.402 0001                4.98           18.2 0001  
#>  6 0001                 0.402 0001                4.98           18.2 0001  
#>  7 0001                 0.402 0001                4.98           18.2 0002  
#>  8 0001                 0.402 0001                4.98           18.2 0002  
#>  9 0001                 0.402 0001                4.98           18.2 0002  
#> 10 0001                 0.402 0001                4.98           18.2 0002  
#> # ℹ 3,834 more rows
#> # ℹ 2 more variables: visit <int>, n_ae <int>

df_scen <- sim_ur_scenarios(df_portf,
                            extra_ur_sites = 2,
                            ur_rate = c(0.5, 1))
#> aggregating site level
#> prepping for simulation
#> generating scenarios
#> getting under-reporting stats
#> evaluating stats


df_scen
#> # A tibble: 140 × 14
#>    study_id site_number extra_ur_sites frac_pat_with_ur ur_rate n_pat
#>    <chr>    <chr>                <dbl>            <dbl>   <dbl> <int>
#>  1 0001     0001                     0            0         0      10
#>  2 0001     0001                     0            0.108     0.5    10
#>  3 0001     0001                     0            0.108     1      10
#>  4 0001     0001                     1            0.208     0.5    10
#>  5 0001     0001                     1            0.208     1      10
#>  6 0001     0001                     2            0.308     0.5    10
#>  7 0001     0001                     2            0.308     1      10
#>  8 0001     0002                     0            0         0      10
#>  9 0001     0002                     0            0.107     0.5    10
#> 10 0001     0002                     0            0.107     1      10
#> # ℹ 130 more rows
#> # ℹ 8 more variables: n_pat_with_med75 <dbl>, visit_med75 <dbl>,
#> #   mean_ae_site_med75 <dbl>, mean_ae_study_med75 <dbl>,
#> #   n_pat_with_med75_study <int>, prob_low <dbl>, prob_low_adj <dbl>,
#> #   prob_low_prob_ur <dbl>

df_perf <- get_portf_perf(df_scen)

df_perf
#> # A tibble: 27 × 5
#>      fpr thresh extra_ur_sites ur_rate   tpr
#>    <dbl>  <dbl>          <dbl>   <dbl> <dbl>
#>  1 0.001  0.382              0     0     0.3
#>  2 0.001  0.382              1     0     0.3
#>  3 0.001  0.382              2     0     0.3
#>  4 0.001  0.382              0     0.5   1  
#>  5 0.001  0.382              1     0.5   1  
#>  6 0.001  0.382              2     0.5   1  
#>  7 0.001  0.382              0     1     1  
#>  8 0.001  0.382              1     1     1  
#>  9 0.001  0.382              2     1     1  
#> 10 0.01   0.382              0     0     0.3
#> # ℹ 17 more rows
# }