Calculate prob_lower for study sites using table operations
Usage
sim_inframe(df_visit, r = 1000, df_site = NULL, event_names = c("ae"))
Arguments
- df_visit
Data frame with columns: study_id, site_number, patnum, visit, n_ae.
- r
Integer or tbl_object, number of repetitions for bootstrap simulation. Pass a tbl object referring to a table with one column and as many rows as desired repetitions. Default: 1000.
- df_site,
dataframe as returned be
site_aggr()
, Will switch to visit_med75. Default: NULL- event_names
vector, contains the event names, default = "ae"
Examples
df_visit <- sim_test_data_study(
n_pat = 100,
n_sites = 5,
frac_site_with_ur = 0.4,
ur_rate = 0.6
)
df_visit$study_id <- "A"
df_sim <- sim_inframe(df_visit)
df_eval <- eval_sites(df_sim)
df_eval
#> # A tibble: 5 × 10
#> study_id site_number events events_per_visit_site visits n_pat
#> <chr> <chr> <dbl> <dbl> <dbl> <int>
#> 1 A S0001 75 0.188 400 20
#> 2 A S0002 75 0.186 403 20
#> 3 A S0003 187 0.496 377 20
#> 4 A S0004 180 0.453 397 20
#> 5 A S0005 187 0.492 380 20
#> # ℹ 4 more variables: events_per_visit_study <dbl>, prob_low <dbl>,
#> # prob_low_adj <dbl>, prob_low_prob_ur <dbl>