DesignOrdinal
is the class for rule-based ordinal designs. The difference
between this class and its parent RuleDesignOrdinal
class is that the
DesignOrdinal
class contains additional model
, stopping
,
increments
and pl_cohort_size
slots.
Usage
DesignOrdinal(
model,
stopping,
increments,
pl_cohort_size = CohortSizeOrdinal(1L, CohortSizeConst(0L)),
...
)
.DefaultDesignOrdinal()
Arguments
- model
(
LogisticLogNormalOrdinal
)
see slot definition.- stopping
(
StoppingOrdinal
)
see slot definition.- increments
(
IncrementsOrdinal
)
see slot definition.- pl_cohort_size
(
CohortSizeOrdinal
)
see slot definition.- ...
Arguments passed on to
RuleDesignOrdinal
next_best
(
NextBestOrdinal
)
see slot definition.cohort_size
(
CohortSizeOrdinal
)
see slot definition.data
(
DataOrdinal
)
see slot definition.starting_dose
(
number
)
see slot definition.
Slots
model
(
LogisticLogNormalOrdinal
)
the model to be used.stopping
(
StoppingOrdinal
)
stopping rule(s) for the trial.increments
(
IncrementsOrdinal
)
how to control increments between dose levels.pl_cohort_size
(
CohortSizeOrdinal
)
rules for the cohort sizes for placebo, if any planned (defaults to constant 0 placebo patients).
Examples
my_size1 <- CohortSizeRange(
intervals = c(0, 30),
cohort_size = c(1, 3)
)
my_size2 <- CohortSizeDLT(
intervals = c(0, 1),
cohort_size = c(1, 3)
)
my_size <- CohortSizeOrdinal(1L, maxSize(my_size1, my_size2))
my_stopping1 <- StoppingMinCohorts(nCohorts = 3)
my_stopping2 <- StoppingTargetProb(
target = c(0.2, 0.35),
prob = 0.5
)
my_stopping3 <- StoppingMinPatients(nPatients = 20)
my_stopping <- StoppingOrdinal(1L, (my_stopping1 & my_stopping2) | my_stopping3)
# Initialize the design.
design <- DesignOrdinal(
model = LogisticLogNormalOrdinal(
mean = c(-3, -4, 1),
cov = diag(c(3, 4, 1)),
ref_dose = 50
),
next_best = NextBestOrdinal(
1L,
NextBestNCRM(
target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25
)
),
stopping = my_stopping,
increments = IncrementsOrdinal(
1L,
IncrementsRelative(
intervals = c(0, 20),
increments = c(1, 0.33)
)
),
cohort_size = my_size,
data = DataOrdinal(
doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100),
yCategories = c("No tox" = 0L, "Sub-tox AE" = 1L, "DLT" = 2L)
),
starting_dose = 3
)