Skip to contents

[Stable]

TDDesign is the class of design based only on DLT responses using ModelTox class model (i.e. LogisticIndepBeta) without MCMC samples.

Usage

TDDesign(
  model,
  stopping,
  increments,
  pl_cohort_size = CohortSizeConst(0L),
  ...
)

.DefaultTDDesign()

Arguments

model

(ModelTox)
see slot definition.

stopping

(Stopping)
see slot definition.

increments

(Increments)
see slot definition.

pl_cohort_size

(CohortSize)
see slot definition.

...

Arguments passed on to RuleDesign

nextBest

(NextBest)
see slot definition.

cohort_size

(CohortSize)
see slot definition.

data

(Data)
see slot definition.

startingDose

(number)
see slot definition.

Slots

model

(ModelTox)
the pseudo DLT model to be used.

stopping

(Stopping)
stopping rule(s) for the trial.

increments

(Increments)
how to control increments between dose levels.

pl_cohort_size

(CohortSize)
rules for the cohort sizes for placebo, if any planned (defaults to constant 0 placebo patients).

Note

Typically, end users will not use the .DefaultTDDesign() function.

Examples

empty_data <- Data(doseGrid = seq(25, 300, 25))

my_model <- LogisticIndepBeta(
  binDLE = c(1.05, 1.8),
  DLEweights = c(3, 3),
  DLEdose = c(25, 300),
  data = empty_data
)

# The escalation rule.
my_next_best <- NextBestTD(
  prob_target_drt = 0.35,
  prob_target_eot = 0.3
)

my_size <- CohortSizeConst(size = 3)

# The increments for the dose-escalation process:
#  the maximum increase of 200% for doses up to the maximum dose in grid,
#  the maximum increase of 200% for dose above the maximum dose in grid.
my_increments <- IncrementsRelative(
  intervals = range(empty_data@doseGrid),
  increments = c(2, 2)
)

# Stop when the maximum sample size of 36 patients is reached.
my_stopping <- StoppingMinPatients(nPatients = 36)

# The design with all the above information and starting with a dose of 25.
# This design incorporates only DLT responses and no DLT samples are involved
# during the simulation.
design <- TDDesign(
  model = my_model,
  stopping = my_stopping,
  increments = my_increments,
  nextBest = my_next_best,
  cohort_size = my_size,
  data = empty_data,
  startingDose = 25
)