TDDesign is the class of design based only on DLT responses using
ModelTox class model (i.e. LogisticIndepBeta) without MCMC samples.
Usage
TDDesign(
model,
stopping,
increments,
pl_cohort_size = CohortSizeConst(0L),
...
)
.DefaultTDDesign()Arguments
- model
(
ModelTox)
see slot definition.- stopping
(
Stopping)
see slot definition.- increments
(
Increments)
see slot definition.- pl_cohort_size
(
CohortSize)
see slot definition.- ...
-
Arguments passed on to
RuleDesignnextBest(
NextBest)
see slot definition.cohort_size(
CohortSize)
see slot definition.data(
Data)
see slot definition.startingDose(
number)
see slot definition.
Slots
model(
ModelTox)
the pseudo DLT model to be used.stopping(
Stopping)
stopping rule(s) for the trial.increments(
Increments)
how to control increments between dose levels.pl_cohort_size(
CohortSize)
rules for the cohort sizes for placebo, if any planned (defaults to constant 0 placebo patients).
Examples
empty_data <- Data(doseGrid = seq(25, 300, 25))
my_model <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = empty_data
)
# The escalation rule.
my_next_best <- NextBestTD(
prob_target_drt = 0.35,
prob_target_eot = 0.3
)
my_size <- CohortSizeConst(size = 3)
# The increments for the dose-escalation process:
# the maximum increase of 200% for doses up to the maximum dose in grid,
# the maximum increase of 200% for dose above the maximum dose in grid.
my_increments <- IncrementsRelative(
intervals = range(empty_data@doseGrid),
increments = c(2, 2)
)
# Stop when the maximum sample size of 36 patients is reached.
my_stopping <- StoppingMinPatients(nPatients = 36)
# The design with all the above information and starting with a dose of 25.
# This design incorporates only DLT responses and no DLT samples are involved
# during the simulation.
design <- TDDesign(
model = my_model,
stopping = my_stopping,
increments = my_increments,
nextBest = my_next_best,
cohort_size = my_size,
data = empty_data,
startingDose = 25
)
