Skip to contents

[Stable]

A function that computes the dose reaching a specific target value of a given variable that dose depends on. The meaning of this variable depends on the type of the model. For instance, for single agent dose escalation model or pseudo DLE (dose-limiting events)/toxicity model, this variable represents the a probability of the occurrence of a DLE. For efficacy models, it represents expected efficacy. The doses are computed based on the samples of the model parameters (samples).

Usage

dose(x, model, samples, ...)

# S4 method for class 'numeric,LogisticNormal,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,LogisticLogNormal,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,LogisticLogNormalOrdinal,Samples'
dose(x, model, samples, grade)

# S4 method for class 'numeric,LogisticLogNormalSub,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,ProbitLogNormal,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,ProbitLogNormalRel,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,LogisticLogNormalGrouped,Samples'
dose(x, model, samples, group)

# S4 method for class 'numeric,LogisticKadane,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,LogisticKadaneBetaGamma,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,LogisticNormalMixture,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,LogisticNormalFixedMixture,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,LogisticLogNormalMixture,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,DualEndpoint,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,LogisticIndepBeta,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,LogisticIndepBeta,missing'
dose(x, model)

# S4 method for class 'numeric,Effloglog,missing'
dose(x, model)

# S4 method for class 'numeric,EffFlexi,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,OneParLogNormalPrior,Samples'
dose(x, model, samples)

# S4 method for class 'numeric,OneParExpPrior,Samples'
dose(x, model, samples)

Arguments

x

(proportion or numeric)
a value of an independent variable on which dose depends. The following recycling rule applies when samples is not missing: vectors of size 1 will be recycled to the size of the sample (i.e. size(samples)). Otherwise, x must have the same size as the sample.

model

(GeneralModel or ModelPseudo)
the model.

samples

(Samples)
the samples of model's parameters that will be used to compute the resulting doses. Can also be missing for some models.

...

model specific parameters when samples are not used.

grade

(integer)
The toxicity grade for which probabilities are required

group

(character or factor)
for LogisticLogNormalGrouped, indicating whether to calculate the dose for the mono or for the combo arm.

Value

A number or numeric vector with the doses. If non-scalar samples were used, then every element in the returned vector corresponds to one element of a sample. Hence, in this case, the output vector is of the same length as the sample vector. If scalar samples were used or no samples were used, e.g. for pseudo DLE/toxicity model, then the output is of the same length as the length of the prob.

Details

The dose() function computes the doses corresponding to a value of a given independent variable, using samples of the model parameter(s). If you work with multivariate model parameters, then assume that your model specific dose() method receives a samples matrix where the rows correspond to the sampling index, i.e. the layout is then nSamples x dimParameter.

Functions

  • dose(x = numeric, model = LogisticNormal, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = LogisticLogNormal, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = LogisticLogNormalOrdinal, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

    In the case of a LogisticLogNormalOrdinal model, dose returns only the probability of toxicity at the given grade or higher

  • dose(x = numeric, model = LogisticLogNormalSub, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = ProbitLogNormal, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = ProbitLogNormalRel, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = LogisticLogNormalGrouped, samples = Samples): method for LogisticLogNormalGrouped which needs group argument in addition.

  • dose(x = numeric, model = LogisticKadane, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = LogisticKadaneBetaGamma, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = LogisticNormalMixture, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = LogisticNormalFixedMixture, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = LogisticLogNormalMixture, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = DualEndpoint, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = LogisticIndepBeta, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x).

  • dose(x = numeric, model = LogisticIndepBeta, samples = missing): compute the dose level reaching a specific target probability of the occurrence of a DLE (x). All model parameters (except x) should be present in the model object.

  • dose(x = numeric, model = Effloglog, samples = missing): compute the dose level reaching a specific target probability of the occurrence of a DLE (x). All model parameters (except x) should be present in the model object.

  • dose(x = numeric, model = EffFlexi, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLE (x). For this method x must be a scalar.

  • dose(x = numeric, model = OneParLogNormalPrior, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLT (x).

  • dose(x = numeric, model = OneParExpPrior, samples = Samples): compute the dose level reaching a specific target probability of the occurrence of a DLT (x).

Note

The dose() and prob() methods are the inverse of each other, for all dose() methods for which its first argument, i.e. a given independent variable that dose depends on, represents toxicity probability.

Examples

# Create some data.
my_data <- Data(
  x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
  y = c(0, 0, 0, 0, 0, 0, 1, 0),
  cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
  doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))
)
#> Used default patient IDs!

# Initialize a model, e.g. 'LogisticLogNormal'.
my_model <- LogisticLogNormal(
  mean = c(-0.85, 1),
  cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
  ref_dose = 56
)

# Get samples from posterior.
my_options <- McmcOptions(burnin = 100, step = 2, samples = 20)
my_samples <- mcmc(data = my_data, model = my_model, options = my_options)

# Posterior for the dose achieving Prob(DLT) = 0.45.
dose(x = 0.45, model = my_model, samples = my_samples)
#>  [1] 40.493866 40.493866  7.512803 12.792543 18.504052 26.719103 21.527861
#>  [8] 21.527861 36.939326 36.893146 25.383489 53.057645 53.057645 53.057645
#> [15] 53.057645 53.057645 53.057645 61.390126 61.390126 61.390126

# Create data from the 'Data' (or 'DataDual') class.
dlt_data <- Data(
  x = c(25, 50, 25, 50, 75, 300, 250, 150),
  y = c(0, 0, 0, 0, 0, 1, 1, 0),
  doseGrid = seq(from = 25, to = 300, by = 25)
)
#> Used default patient IDs!
#> Used best guess cohort indices!

# Initialize a toxicity model using 'LogisticIndepBeta' model.
dlt_model <- LogisticIndepBeta(
  binDLE = c(1.05, 1.8),
  DLEweights = c(3, 3),
  DLEdose = c(25, 300),
  data = dlt_data
)

# Get samples from posterior.
dlt_sample <- mcmc(data = dlt_data, model = dlt_model, options = my_options)

# Posterior for the dose achieving Prob(DLT) = 0.45.
dose(x = 0.45, model = dlt_model, samples = dlt_sample)
#>  [1]  5.394717e+07 2.079593e-131 2.079593e-131 2.079593e-131 2.079593e-131
#>  [6]  2.103099e+01  2.103099e+01  1.875484e+02  3.718879e+01  3.718879e+01
#> [11]  3.718879e+01  3.718879e+01  3.718879e+01  3.718879e+01  3.718879e+01
#> [16]  3.718879e+01  3.718879e+01  3.718879e+01  3.718879e+01  6.519215e+01
dose(x = c(0.45, 0.6), model = dlt_model)
#> [1] 144.6624 247.7348
data_ordinal <- .DefaultDataOrdinal()
model <- .DefaultLogisticLogNormalOrdinal()
options <- .DefaultMcmcOptions()
samples <- mcmc(data_ordinal, model, options)
#> Warning: Unused variable "y" in data

dose(0.25, model, samples, grade = 2L)
#>    [1]     73.66230     69.26277     57.59442   1704.54535     68.37459
#>    [6]     72.49957     93.01406     68.42297     56.50985     71.65370
#>   [11]    236.50583     58.02286     85.03834    124.68054     62.67019
#>   [16]     59.22934     83.91917     56.76817     72.00571     84.45083
#>   [21]     51.07953     90.33918     78.38532    126.59324     78.63263
#>   [26]     65.13993    220.47526     55.86311     95.05210     71.45512
#>   [31]     56.97830     69.63138     60.60269     81.14534    137.50123
#>   [36]     57.70894     82.30123    510.69889     60.07097     57.10846
#>   [41]    114.40048     64.07634     62.73175     57.83157     59.55051
#>   [46]     63.71861     66.07862     70.98497     55.16552     81.71818
#>   [51]     55.31332     48.87363     56.64099     64.21779     60.63302
#>   [56]     88.29682     68.86609     90.30877     77.70827     60.63826
#>   [61]     56.60644   3348.92475    104.78654     77.96074     87.71052
#>   [66]    192.16169     56.15453    326.23192    257.32668     58.99669
#>   [71]     58.90379     66.25331     66.06290     67.60811     92.70238
#>   [76]     89.11290     60.56974    213.11583     52.86751     66.40387
#>   [81]     60.81547     85.95668    316.74803     69.86720     55.90505
#>   [86]     73.06936     56.94708    229.59636     82.80834    150.70727
#>   [91]     71.22524     55.18455     69.06112     95.09190     56.62639
#>   [96]     59.89266    151.12009    157.88905    164.02769     83.03914
#>  [101]     56.98886    223.17481    117.18259    233.30130     70.76530
#>  [106]     64.21175     54.91049     66.59958     65.16131     98.28926
#>  [111]     61.76182    115.86646     82.67969     55.25337     61.02278
#>  [116]     90.69566     64.60395     61.10110     70.84422    169.91412
#>  [121]    125.67825    105.42267     59.32554    134.75350    115.66464
#>  [126]     87.39917     60.77381     58.95959     79.68716     68.37905
#>  [131]     67.47516     74.69404    105.71430    466.04187    493.30903
#>  [136]    184.76111    114.25383     56.10753    101.91046    166.40944
#>  [141]     91.99249     55.96758    233.07314     64.71913     59.43801
#>  [146]     60.22698     66.85596     71.55594     52.08734     89.32950
#>  [151]     61.90924     65.08408     66.32021     77.00142     69.39533
#>  [156]     96.48256     64.45940     60.09359    352.41319     71.17260
#>  [161]    106.98586     90.30308     34.35364     60.71151     55.30000
#>  [166]    101.73137     67.81308     65.94731     89.00445     66.47955
#>  [171]     54.38406    118.05578     57.84685     61.08405     69.18871
#>  [176]    433.27363     54.78052     65.26440     65.18460     63.16588
#>  [181]     58.62861     56.35566     82.63933     56.71769     66.13502
#>  [186]     91.90259    184.19647     72.06477   2712.38833    259.40090
#>  [191]     70.01057     73.23670    269.08685     56.37168     67.76700
#>  [196]    119.31634     57.42933     62.03615     57.64953     75.50439
#>  [201]     63.83885     64.45479     96.16514     99.89426     83.92075
#>  [206]     65.75495     65.25733     60.10781     80.54901     74.46646
#>  [211]     59.08171     79.31018     50.45503     61.29202     61.26706
#>  [216]    684.10048 125588.97078     54.86099     72.69125     61.15184
#>  [221]     53.04566     71.68558     61.06284     71.54624     55.77658
#>  [226]     62.20153     60.50178     62.64950     67.10352    312.91555
#>  [231]     85.85958     77.65476     75.06240     64.25381     87.91142
#>  [236]     81.98799     79.49371     65.62862     63.83726     62.20223
#>  [241]     59.45575     55.26435    134.93755     78.65843     56.31494
#>  [246]     85.72197     79.74544     61.78465     76.05769     53.61656
#>  [251]     61.31529     59.46037     66.57263    541.88060     53.48825
#>  [256]     58.22751     88.21486     74.07987     59.07920     62.49947
#>  [261]     74.04982    100.48804     77.79006    124.14566     85.04816
#>  [266]    112.32775     61.28987     65.15541     57.32175     69.69784
#>  [271]     96.27825     60.53126     65.22544     66.26503     66.18753
#>  [276]     76.95749    110.34424     61.96223     66.75781    136.85564
#>  [281]     68.52302     66.78708     63.27885     58.19341     59.13017
#>  [286]     63.75064     63.85403     56.58262     64.84515     62.67146
#>  [291]     58.55530    110.67878     73.52252    119.85030     56.69375
#>  [296]     69.88390     64.22673     96.97613     57.25150     57.35856
#>  [301]     69.54398     67.03323     64.88836     75.87158     87.82359
#>  [306]     75.42379     62.87027     60.15729     59.61207     58.02553
#>  [311]     61.46639     65.57148    116.17122     58.14487     76.03824
#>  [316]     56.89064     63.69498     62.18996     68.55945    147.38409
#>  [321]    140.58809     62.85045     67.18886     57.41990     71.48539
#>  [326]    269.35587     65.70937     62.84875     98.38187     62.53127
#>  [331]     62.21631     60.83539    206.90891     58.31061     83.60993
#>  [336]     57.17499     56.60213     49.85990     49.95221     70.53660
#>  [341]     64.85082     67.03594     68.94721     66.04801    216.77807
#>  [346]    391.20308     67.38458    458.52970     64.88908     57.33450
#>  [351]     64.47459    202.83900     69.08884     59.49876     67.37488
#>  [356]    124.99206     63.04376     69.14540     60.07025     59.97225
#>  [361]     58.64680     56.62132     67.43088     93.62524     79.02131
#>  [366]     63.49714     70.39393     60.91224     58.22117     66.84625
#>  [371]     66.11343     70.59447     73.66638     62.26269     64.91867
#>  [376]     65.89189     56.82182     62.94749     69.31141     58.24190
#>  [381]     58.65377     99.61511     64.42957   1273.18660    275.77212
#>  [386]     59.60402     73.92633     98.73915    108.69699     96.87222
#>  [391]     70.58591     66.16373     56.17783     60.74806     55.17121
#>  [396]    196.15881   7617.03989    367.61931     75.28948     65.01095
#>  [401]     67.45162     61.32855     57.35474     59.22911    110.20813
#>  [406]     68.17671     50.29656    155.88172     64.73183     62.01176
#>  [411]     57.33297     63.32329     78.34419     78.54664     94.97828
#>  [416]    137.29963     68.53785     87.30185     59.36019     80.82771
#>  [421]    145.83431     64.95279     65.85945     56.22525    156.34437
#>  [426]    144.94279     87.58744     55.84031    175.04560     76.60735
#>  [431]     91.93098     61.71106    106.82275     47.07363     56.86245
#>  [436]     63.32223     55.25737     61.20438     59.42152     63.10895
#>  [441]     63.25584     56.69941     61.08349     69.67773    133.61421
#>  [446]     50.32303    103.67574     54.34509     81.40603     52.10781
#>  [451]     60.18460     76.30930    240.13688     56.06697     71.49599
#>  [456]     66.90533     69.90658     63.82145     66.69280     65.73983
#>  [461]     57.53825    101.51712     84.72693     59.75971    108.06856
#>  [466]     54.53290     64.43021     65.71066     87.84433     90.56814
#>  [471]     53.32416     64.55572     85.07332     62.34948     89.31309
#>  [476]     61.83713    186.82011     57.74272     76.31666    100.22656
#>  [481]     59.81524     67.46571     57.12879     58.97224     63.12918
#>  [486]    235.18130     53.72897     77.92087     73.63278     65.79782
#>  [491]     45.99006     88.38506     67.71518    102.56190     72.13501
#>  [496]    123.81899     59.71263     55.20859     62.71620     47.03296
#>  [501]    195.21747     74.04662     64.22708     56.32755     70.46578
#>  [506]     66.58731    174.65387     66.33559     89.14232     57.45372
#>  [511]     81.63275     67.16816     66.70249   2593.64468     62.94872
#>  [516]     56.02555     59.34476     59.75908     63.47112     77.82971
#>  [521]     61.97228     53.17268    355.37900     54.75835     54.56521
#>  [526]    102.61184     58.81921     68.54321     60.50392     63.91485
#>  [531]     69.11015     72.83952     70.11399     61.20843     57.34797
#>  [536]     68.32667     60.41456     60.83553     67.64407     58.81016
#>  [541]     60.44918     65.52636     96.48326     82.72745    316.82802
#>  [546]    116.07789     79.40569     59.74395     61.09315     69.21221
#>  [551]     78.86254     86.21891     64.49488    258.10848     82.58363
#>  [556]     53.52633     71.28436    103.95103     97.75764     64.37696
#>  [561]     66.43180     63.45975     61.73063    141.13243     59.47126
#>  [566]     55.71237     78.73690     71.00576     59.04138     68.26574
#>  [571]     63.88703     63.59623     69.24602     56.22134     60.99221
#>  [576]     75.97619     75.37319     58.60052     67.92292     59.70723
#>  [581]     60.22697     56.82662     73.22599     79.17320     78.11693
#>  [586]     91.36390     56.17136     62.48515    139.30124     57.65474
#>  [591]     57.08988     90.64164     58.69616     79.61003     87.96608
#>  [596]     54.42863     87.58153     60.04713    386.42720     64.67218
#>  [601]   1344.15585    105.35303     53.17148     63.85646     61.49639
#>  [606]    105.55264     70.60394    328.80293     67.82127     65.40968
#>  [611]     76.96335     54.53956     67.24639     68.35548    106.57456
#>  [616]    274.43754     72.38917     79.64056     73.78753    137.83016
#>  [621]     90.85752     68.65081     78.95017     82.86169     54.06917
#>  [626]     57.64584     58.44948     57.22949    383.80301     71.84268
#>  [631]     66.35483     57.35032     63.04611     85.59008     72.07504
#>  [636]     47.10333     77.69493     75.15503 447180.53188    101.52143
#>  [641]     77.05093     58.13227     75.78509     74.56498     58.74983
#>  [646]     65.89011     83.16628    125.15412    107.13210     61.98301
#>  [651]     87.82134     54.72018     62.50879     66.81358     57.39415
#>  [656]     58.30040    168.25578     62.26389     55.57422     63.45121
#>  [661]     70.72448     92.93597    189.44538     60.96411    171.50235
#>  [666]    132.18045    192.25903 111534.46324     58.91132     57.27441
#>  [671]     61.03208     62.47845     74.18122     58.22614     77.52573
#>  [676]     62.59004     67.44565     59.87873     78.19023     61.76724
#>  [681]     63.22311     66.39821     67.15459    162.27491     52.77743
#>  [686]     62.07866    214.88586    116.43889     60.46029    266.54482
#>  [691]    103.47591    166.33405     45.90229  19740.73799     56.09811
#>  [696]     90.73203     73.70715     69.45934     91.10970    100.72497
#>  [701]     61.25575     96.95800     56.82460    131.46449     62.97592
#>  [706]     59.48042     59.23179    103.88843     61.37033     56.74065
#>  [711]     80.61195     58.42525     66.36798     85.22887     60.00980
#>  [716]     58.93401   1317.50295     83.99669     74.23507    103.51552
#>  [721]    339.41402   3461.88351     67.40042     66.48526     90.44208
#>  [726]     68.00774     65.20286     72.92188     57.00445     89.55268
#>  [731]     77.53582     63.08234     70.46860     59.47465   1094.75352
#>  [736] 290325.87487     55.06420     62.16590     62.69175     60.89598
#>  [741]     67.72073     60.81620     88.13502     71.46510    104.02018
#>  [746]    164.19494     62.50945     57.71116     61.64072    115.13178
#>  [751]     55.65093    149.98887     60.40962     71.78578     61.13672
#>  [756]    112.20444     32.10063     53.08265     90.15989     59.86848
#>  [761]     64.74720    248.41838     86.97684     66.99691     56.79480
#>  [766]     73.83534     68.59173     56.16719     72.86575     53.21174
#>  [771]    179.00437   1547.99005    119.95044    172.95891     60.68146
#>  [776]     69.39932     68.56010    132.04498    288.07309     62.81031
#>  [781]     70.48359    192.43203     94.89130     81.89913     58.52946
#>  [786]     56.74639     58.20735     74.45761     86.56999     82.30156
#>  [791]     86.30369     60.89093     68.23862     77.49254    161.50348
#>  [796]     81.42909     92.61300     59.97505     68.46701    554.44949
#>  [801]     83.39131     76.58830     60.35380     63.48036     90.90950
#>  [806]     54.20058     68.61400    139.99630     66.46338     82.95579
#>  [811]     57.80437     62.41841     55.93714     60.92197     87.44683
#>  [816]     62.79058     64.50641     93.95511     62.02129     60.76295
#>  [821]     91.20613    997.69214     59.33081     69.99671     61.70361
#>  [826]    147.70791     62.29546     60.64446     55.38301     60.64499
#>  [831]     79.39925     62.86452    178.40487     56.53996     81.05218
#>  [836]     63.63550     62.43104     58.23519     87.30027     81.06955
#>  [841]     60.12935     58.37472     68.30636     63.16514    156.88997
#>  [846]     62.32426    665.29940     63.45197     72.58775     80.83724
#>  [851]     57.64544     69.73311     53.47138     64.08106     59.91950
#>  [856]     60.08590     76.11023     62.05264     67.96529     72.79313
#>  [861]     56.11559     63.35373     98.72450     58.73221     59.03936
#>  [866]     73.10128     65.84889    125.86223    104.55941     71.88174
#>  [871]     73.99823    162.34180    147.52333     52.06619     58.70678
#>  [876]     61.13634     75.78282     65.40518     66.20355     60.52378
#>  [881]     64.95695     50.24134     60.44630     58.36142     63.71495
#>  [886]     66.04930     65.73076    188.03567     61.11172   7021.76411
#>  [891]    886.12213    370.31969     68.96821     57.63396     60.11063
#>  [896]     80.83049     58.80160     65.03967    104.72334     57.95784
#>  [901]     95.51289     73.18359     70.46360     73.74960     68.46814
#>  [906]     59.63259     64.30971    162.89408   2567.04392     67.57930
#>  [911]     71.82496     58.50489     83.81590     64.81648    314.28942
#>  [916]     58.28143     48.82894     59.46944     75.77824    219.20774
#>  [921]     59.54940   1196.09438     54.41340     86.78721    139.42532
#>  [926]     60.53653     55.81262     72.51396     68.76208     60.68540
#>  [931]     70.66051     70.34233     54.57643     53.40609     68.93799
#>  [936]     69.83915     53.66088     57.42238     82.76626     68.80675
#>  [941]     57.82741     89.33259     62.81965     81.70339     63.34807
#>  [946]    105.04055     48.63576     56.65990     66.14872     61.62150
#>  [951]     65.58307    221.75893     66.20692     78.41180     66.42122
#>  [956]     58.67807     61.49687     60.39617    177.81825     55.59001
#>  [961]   1298.41300     81.70301     54.08650    106.70478     55.09018
#>  [966]     61.03986     68.04569     60.45424     80.04277    101.29138
#>  [971]     57.04234     56.27361    127.75347     65.49210     65.02804
#>  [976]     67.36004     61.91943     56.62186     53.97333     67.66413
#>  [981]     60.86066     61.22153     75.80496     59.59299     67.37957
#>  [986]     61.10462     69.90964    126.92044     87.83838     90.72487
#>  [991]     62.32689     49.10158    106.37769     58.18780     66.63488
#>  [996]     71.41387     58.58332     73.58539     58.31074     57.39207