Computing the Doses for a given independent variable, Model and Samples
Source:R/Model-methods.R
dose.Rd
A function that computes the dose reaching a specific target value of a given variable that dose depends on. The meaning of this variable depends on the type of the model. For instance, for single agent dose escalation model or pseudo DLE (dose-limiting events)/toxicity model, this variable represents the a probability of the occurrence of a DLE. For efficacy models, it represents expected efficacy. The doses are computed based on the samples of the model parameters (samples).
Usage
dose(x, model, samples, ...)
# S4 method for class 'numeric,LogisticNormal,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,LogisticLogNormal,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,LogisticLogNormalOrdinal,Samples'
dose(x, model, samples, grade)
# S4 method for class 'numeric,LogisticLogNormalSub,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,ProbitLogNormal,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,ProbitLogNormalRel,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,LogisticLogNormalGrouped,Samples'
dose(x, model, samples, group)
# S4 method for class 'numeric,LogisticKadane,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,LogisticKadaneBetaGamma,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,LogisticNormalMixture,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,LogisticNormalFixedMixture,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,LogisticLogNormalMixture,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,DualEndpoint,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,LogisticIndepBeta,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,LogisticIndepBeta,missing'
dose(x, model)
# S4 method for class 'numeric,Effloglog,missing'
dose(x, model)
# S4 method for class 'numeric,EffFlexi,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,OneParLogNormalPrior,Samples'
dose(x, model, samples)
# S4 method for class 'numeric,OneParExpPrior,Samples'
dose(x, model, samples)
Arguments
- x
(
proportion
ornumeric
)
a value of an independent variable on which dose depends. The following recycling rule applies whensamples
is not missing: vectors of size 1 will be recycled to the size of the sample (i.e.size(samples)
). Otherwise,x
must have the same size as the sample.- model
(
GeneralModel
orModelPseudo
)
the model.- samples
(
Samples
)
the samples of model's parameters that will be used to compute the resulting doses. Can also be missing for some models.- ...
model specific parameters when
samples
are not used.- grade
(
integer
)
The toxicity grade for which probabilities are required- group
(
character
orfactor
)
forLogisticLogNormalGrouped
, indicating whether to calculate the dose for themono
or for thecombo
arm.
Value
A number
or numeric
vector with the doses.
If non-scalar samples
were used, then every element in the returned vector
corresponds to one element of a sample. Hence, in this case, the output
vector is of the same length as the sample vector. If scalar samples
were
used or no samples
were used, e.g. for pseudo DLE/toxicity model
,
then the output is of the same length as the length of the prob
.
Details
The dose()
function computes the doses corresponding to a value of
a given independent variable, using samples of the model parameter(s).
If you work with multivariate model parameters, then assume that your model
specific dose()
method receives a samples matrix where the rows
correspond to the sampling index, i.e. the layout is then
nSamples x dimParameter
.
Functions
dose(x = numeric, model = LogisticNormal, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = LogisticLogNormal, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = LogisticLogNormalOrdinal, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).In the case of a
LogisticLogNormalOrdinal
model,dose
returns only the probability of toxicity at the given grade or higherdose(x = numeric, model = LogisticLogNormalSub, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = ProbitLogNormal, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = ProbitLogNormalRel, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = LogisticLogNormalGrouped, samples = Samples)
: method forLogisticLogNormalGrouped
which needsgroup
argument in addition.dose(x = numeric, model = LogisticKadane, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = LogisticKadaneBetaGamma, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = LogisticNormalMixture, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = LogisticNormalFixedMixture, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = LogisticLogNormalMixture, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = DualEndpoint, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = LogisticIndepBeta, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
).dose(x = numeric, model = LogisticIndepBeta, samples = missing)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
). All model parameters (exceptx
) should be present in themodel
object.dose(x = numeric, model = Effloglog, samples = missing)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
). All model parameters (exceptx
) should be present in themodel
object.dose(x = numeric, model = EffFlexi, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLE (x
). For this methodx
must be a scalar.dose(x = numeric, model = OneParLogNormalPrior, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLT (x
).dose(x = numeric, model = OneParExpPrior, samples = Samples)
: compute the dose level reaching a specific target probability of the occurrence of a DLT (x
).
Note
The dose()
and prob()
methods are the inverse of each other, for
all dose()
methods for which its first argument, i.e. a given independent
variable that dose depends on, represents toxicity probability.
Examples
# Create some data.
my_data <- Data(
x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))
)
#> Used default patient IDs!
# Initialize a model, e.g. 'LogisticLogNormal'.
my_model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56
)
# Get samples from posterior.
my_options <- McmcOptions(burnin = 100, step = 2, samples = 20)
my_samples <- mcmc(data = my_data, model = my_model, options = my_options)
# Posterior for the dose achieving Prob(DLT) = 0.45.
dose(x = 0.45, model = my_model, samples = my_samples)
#> [1] 83.92736 17.31912 14.75188 14.75188 14.75188 52.29882 74.40049 74.40049
#> [9] 57.91671 57.91671 27.06314 27.06314 26.06654 26.06654 10.43350 77.83858
#> [17] 77.15860 77.15860 32.59290 32.59290
# Create data from the 'Data' (or 'DataDual') class.
dlt_data <- Data(
x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
doseGrid = seq(from = 25, to = 300, by = 25)
)
#> Used default patient IDs!
#> Used best guess cohort indices!
# Initialize a toxicity model using 'LogisticIndepBeta' model.
dlt_model <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = dlt_data
)
# Get samples from posterior.
dlt_sample <- mcmc(data = dlt_data, model = dlt_model, options = my_options)
# Posterior for the dose achieving Prob(DLT) = 0.45.
dose(x = 0.45, model = dlt_model, samples = dlt_sample)
#> [1] 10.07613 10.07613 22.15191 850756.88704 48.50700
#> [6] 48.50700 48.50700 72.06078 72.06078 72.06078
#> [11] 2590.71936 155.17055 155.17055 155.17055 212.47066
#> [16] 156.91934 234.83714 234.83714 196.82793 90.86247
dose(x = c(0.45, 0.6), model = dlt_model)
#> [1] 144.6624 247.7348
data_ordinal <- .DefaultDataOrdinal()
model <- .DefaultLogisticLogNormalOrdinal()
options <- .DefaultMcmcOptions()
samples <- mcmc(data_ordinal, model, options)
#> Warning: Unused variable "y" in data
dose(0.25, model, samples, grade = 2L)
#> [1] 1.622568e+02 5.127942e+01 5.654553e+01 6.538169e+01 5.865500e+01
#> [6] 6.227955e+01 5.510967e+01 6.382692e+01 1.140959e+02 8.887319e+01
#> [11] 5.803908e+01 6.937783e+01 6.870989e+01 7.040638e+01 6.817301e+01
#> [16] 2.690948e+02 5.197472e+01 6.112493e+01 5.807671e+01 5.851652e+01
#> [21] 5.823141e+01 5.851459e+01 1.104981e+02 5.807693e+01 5.465142e+01
#> [26] 5.896604e+01 6.198551e+01 6.977259e+01 5.999659e+01 7.951730e+01
#> [31] 3.990871e+02 9.165742e+01 3.679319e+02 1.397387e+03 7.028911e+01
#> [36] 6.370125e+01 4.163038e+02 7.050286e+01 6.158816e+01 5.878832e+01
#> [41] 9.929990e+02 6.754609e+01 5.625886e+01 1.154900e+02 6.027290e+01
#> [46] 6.158338e+01 5.663119e+01 6.391727e+01 9.002031e+01 8.043724e+01
#> [51] 6.937605e+01 9.770169e+01 6.807228e+01 7.183096e+01 1.297178e+02
#> [56] 6.066504e+01 9.968658e+01 3.144258e+02 5.832502e+01 6.656114e+01
#> [61] 5.844393e+01 5.965129e+01 7.177245e+01 6.726462e+01 5.573957e+01
#> [66] 5.518009e+01 6.812261e+01 1.671003e+02 8.848563e+02 1.706751e+02
#> [71] 1.202330e+02 1.577158e+02 6.832530e+01 1.772940e+02 1.346180e+03
#> [76] 5.908516e+01 7.404976e+01 7.783836e+01 5.728623e+01 6.087123e+01
#> [81] 6.066562e+01 5.852376e+01 1.623743e+02 6.030894e+01 1.687075e+02
#> [86] 7.110178e+01 5.214640e+01 7.736459e+01 6.427141e+01 5.704023e+01
#> [91] 7.445915e+01 5.065371e+01 7.294591e+01 5.939975e+01 8.225670e+01
#> [96] 7.666194e+01 3.949470e+02 1.415465e+02 6.221850e+01 7.561528e+01
#> [101] 6.225405e+01 1.191515e+02 6.190863e+01 5.380262e+01 5.456916e+01
#> [106] 5.824418e+01 5.515142e+01 9.441479e+01 6.711775e+01 6.825619e+01
#> [111] 1.247992e+02 6.060748e+01 5.785565e+01 5.807961e+01 6.136597e+01
#> [116] 8.073258e+01 5.526404e+01 6.993290e+01 5.838973e+01 5.852547e+01
#> [121] 6.032251e+01 5.476428e+01 5.044035e+01 6.811761e+01 7.667478e+01
#> [126] 6.905269e+01 1.749636e+02 7.203504e+01 1.651244e+06 1.305274e+02
#> [131] 5.412919e+01 6.531168e+01 5.868831e+01 8.094078e+01 5.793967e+01
#> [136] 7.101907e+01 6.270538e+01 7.094314e+01 7.558709e+01 6.113030e+01
#> [141] 7.916207e+01 1.521058e+02 4.134054e+02 3.194686e+02 5.329484e+01
#> [146] 6.103953e+01 6.819338e+01 8.556829e+01 5.446120e+01 5.711942e+02
#> [151] 6.581221e+01 9.258998e+01 6.298155e+01 6.795915e+01 5.970093e+01
#> [156] 6.085985e+01 2.010462e+02 9.578114e+01 8.939493e+01 5.141339e+01
#> [161] 6.056213e+01 5.628353e+01 6.025112e+01 7.072572e+01 5.469470e+01
#> [166] 1.290279e+02 5.545185e+01 5.879221e+01 5.563827e+01 7.195396e+01
#> [171] 6.918677e+01 8.698850e+01 6.808180e+01 7.719746e+01 7.356156e+01
#> [176] 5.989236e+01 6.613858e+01 6.152640e+01 5.270200e+01 1.382043e+02
#> [181] 1.253100e+02 1.683857e+02 6.114820e+01 9.235422e+01 5.669655e+01
#> [186] 6.128885e+01 6.433939e+01 6.274172e+01 8.976091e+01 6.080020e+01
#> [191] 9.015684e+01 2.482098e+03 5.886958e+01 7.279799e+01 6.722745e+01
#> [196] 1.586597e+02 8.820569e+01 5.854936e+01 5.907037e+01 6.216827e+01
#> [201] 6.340268e+01 7.563085e+01 8.724027e+01 9.989371e+01 7.306943e+01
#> [206] 5.489748e+01 6.362024e+01 6.104350e+01 5.698208e+01 5.978940e+01
#> [211] 2.227834e+03 8.411823e+01 7.212521e+01 6.517372e+01 5.307126e+01
#> [216] 8.786832e+01 5.387528e+01 6.923490e+01 7.228377e+01 7.401037e+01
#> [221] 6.844864e+01 5.635452e+01 1.034410e+02 6.953730e+01 7.556674e+01
#> [226] 7.498667e+01 5.593371e+01 6.563827e+01 1.392733e+02 8.308057e+01
#> [231] 5.462032e+01 6.979447e+01 6.449842e+01 6.232237e+01 6.068228e+01
#> [236] 1.135124e+02 1.314920e+02 5.792937e+01 6.465053e+01 8.334261e+01
#> [241] 1.972783e+02 5.734965e+01 6.281196e+01 6.821545e+01 5.505106e+01
#> [246] 1.065151e+02 6.422880e+01 2.673893e+02 5.348975e+01 5.717074e+01
#> [251] 7.153076e+01 6.052349e+01 6.309873e+01 8.853358e+01 5.497330e+01
#> [256] 7.312512e+01 6.522044e+01 1.030190e+02 7.357776e+01 6.719530e+01
#> [261] 8.752784e+01 1.596937e+02 2.042124e+02 1.226516e+02 5.837485e+01
#> [266] 6.091881e+01 6.993020e+01 5.981182e+01 6.928978e+01 8.927375e+01
#> [271] 5.466040e+01 5.905479e+01 7.365945e+01 7.384030e+01 5.785205e+01
#> [276] 5.887399e+01 9.477360e+01 1.237397e+02 6.576536e+01 5.920090e+01
#> [281] 6.085620e+01 6.011679e+01 6.735995e+01 6.685609e+01 1.122947e+02
#> [286] 6.741760e+01 6.263377e+01 6.833221e+01 5.822321e+01 7.308099e+01
#> [291] 6.487209e+01 5.653660e+01 6.266862e+01 9.191149e+01 6.157662e+01
#> [296] 6.992027e+01 7.156079e+01 5.016963e+01 4.608234e+01 7.965848e+01
#> [301] 5.316004e+01 2.534812e+02 1.301869e+03 6.085436e+01 6.268652e+01
#> [306] 5.868981e+01 5.605958e+01 5.928053e+01 6.483575e+01 5.656844e+01
#> [311] 5.720673e+01 6.616700e+01 5.779525e+01 7.527974e+01 5.498589e+01
#> [316] 5.851635e+01 5.722090e+01 6.360606e+01 8.359958e+01 5.656364e+01
#> [321] 1.103946e+02 8.064012e+01 8.224234e+01 1.824116e+02 5.892836e+01
#> [326] 6.016637e+01 5.688373e+01 6.514893e+01 8.378629e+01 8.399629e+01
#> [331] 6.539880e+01 7.541147e+01 6.264342e+01 6.095963e+01 7.767950e+01
#> [336] 5.660718e+01 5.547541e+01 8.109290e+01 7.976582e+01 6.874112e+01
#> [341] 9.041592e+01 5.789236e+01 5.937383e+01 1.040848e+02 6.051328e+01
#> [346] 8.211972e+01 6.466373e+01 6.381302e+01 6.481991e+01 6.293843e+01
#> [351] 8.240078e+01 6.532027e+01 1.225048e+02 7.698728e+01 7.563561e+01
#> [356] 6.104320e+01 1.539947e+02 6.151526e+01 6.264847e+01 5.509362e+01
#> [361] 6.219682e+01 6.153730e+01 1.041148e+02 6.256590e+01 7.099940e+01
#> [366] 1.410611e+02 5.196642e+01 7.989137e+01 1.329307e+02 5.778532e+01
#> [371] 7.075140e+01 6.195791e+01 6.869722e+01 5.581846e+01 1.027932e+02
#> [376] 5.942457e+01 1.085009e+02 7.711530e+01 5.574335e+01 9.351783e+01
#> [381] 6.341187e+01 8.364286e+01 1.015238e+02 5.142253e+01 6.551438e+01
#> [386] 5.608133e+01 8.897740e+01 8.085902e+01 3.432324e+02 1.246892e+02
#> [391] 5.702152e+01 6.134040e+01 5.910561e+01 7.114767e+01 6.749176e+01
#> [396] 1.108896e+02 6.063332e+01 6.587949e+01 8.798913e+01 5.738057e+01
#> [401] 8.448539e+01 1.231943e+02 6.060525e+01 6.155673e+01 5.963142e+01
#> [406] 6.932398e+01 5.787352e+01 6.286399e+01 6.759612e+01 5.487483e+01
#> [411] 6.063171e+01 5.321996e+01 6.785541e+01 3.597166e+02 8.046113e+01
#> [416] 5.491774e+01 6.302067e+01 5.988174e+01 6.229517e+01 8.279077e+01
#> [421] 6.232486e+01 5.451771e+01 6.418031e+01 5.831999e+01 5.989807e+01
#> [426] 6.284811e+01 6.220041e+01 5.427050e+01 6.348896e+01 7.671499e+01
#> [431] 6.281620e+01 3.665329e+02 8.165179e+01 6.015288e+01 6.305540e+01
#> [436] 5.786209e+01 5.878698e+01 5.765323e+01 1.143598e+02 3.248640e+02
#> [441] 2.493390e+02 1.046011e+02 5.725683e+01 7.555087e+01 1.095390e+02
#> [446] 3.054379e+02 6.006615e+01 5.593900e+01 6.207857e+01 7.011266e+01
#> [451] 6.952224e+01 5.269060e+01 5.628754e+01 7.811395e+01 6.574739e+01
#> [456] 7.094028e+01 1.657532e+02 5.676531e+01 7.599309e+01 7.919033e+01
#> [461] 5.674852e+01 5.366420e+01 5.932090e+01 7.766338e+01 8.772895e+01
#> [466] 5.587237e+01 7.487619e+01 7.659867e+01 5.930446e+01 6.417462e+01
#> [471] 2.968233e+02 5.121246e+01 5.882230e+01 6.581565e+01 1.349976e+02
#> [476] 5.694229e+01 5.707994e+01 6.761428e+01 5.691642e+01 7.570943e+01
#> [481] 7.753512e+01 5.137461e+01 5.245417e+01 2.036162e+02 8.845325e+01
#> [486] 6.493501e+01 7.336940e+01 7.189114e+01 4.085765e+02 9.867440e+01
#> [491] 6.416342e+01 6.851917e+01 6.659111e+01 6.275199e+01 5.762435e+01
#> [496] 6.447889e+01 5.862953e+01 6.902716e+01 7.024887e+01 6.402361e+01
#> [501] 9.364474e+01 9.688495e+01 7.547166e+01 5.815437e+01 6.096657e+01
#> [506] 6.201005e+01 6.294152e+01 6.104912e+01 5.428042e+01 7.736192e+01
#> [511] 7.548911e+01 1.021156e+02 1.471062e+02 7.438562e+01 7.601780e+01
#> [516] 7.481969e+01 6.259670e+01 5.242041e+01 6.051139e+01 1.022514e+02
#> [521] 5.131243e+01 5.848921e+01 6.610565e+01 6.207497e+01 7.110909e+01
#> [526] 5.857991e+01 6.167787e+01 5.998522e+01 5.177737e+01 6.004351e+01
#> [531] 3.483095e+04 8.521934e+03 7.093853e+01 2.078983e+02 1.102947e+02
#> [536] 6.056828e+01 8.452595e+01 6.780651e+01 5.523722e+01 5.782088e+01
#> [541] 6.146047e+01 5.158095e+01 6.403968e+01 7.043077e+01 6.103179e+01
#> [546] 6.565855e+01 6.228205e+02 6.909534e+01 9.931548e+01 5.670691e+01
#> [551] 6.022476e+01 1.317349e+02 5.515646e+01 5.807976e+01 6.231855e+01
#> [556] 9.813618e+01 1.383876e+02 1.001676e+02 7.200941e+01 9.283326e+01
#> [561] 1.117608e+02 3.220492e+02 5.680259e+01 6.261380e+01 6.632756e+01
#> [566] 5.779889e+01 1.179517e+03 9.302269e+01 6.525738e+01 7.426961e+01
#> [571] 6.947701e+01 6.181216e+01 5.521479e+01 5.962531e+01 6.438426e+01
#> [576] 7.222071e+01 6.534770e+01 5.560766e+01 5.757622e+01 5.808088e+01
#> [581] 6.887794e+01 6.083538e+01 1.011513e+02 6.038656e+01 8.065857e+01
#> [586] 7.101527e+01 7.777587e+01 5.882047e+01 5.634589e+01 6.506679e+01
#> [591] 6.812754e+01 5.632383e+01 9.023545e+01 6.551150e+01 6.879098e+01
#> [596] 5.980671e+01 6.229462e+01 5.937469e+01 7.342902e+01 1.349198e+02
#> [601] 6.356108e+01 6.002484e+01 7.758620e+01 5.882556e+01 5.877339e+01
#> [606] 1.653621e+02 5.652191e+01 1.597194e+02 6.728948e+01 8.245611e+01
#> [611] 9.581538e+01 6.005818e+01 5.882712e+01 7.075886e+01 6.052232e+01
#> [616] 7.674466e+01 6.212469e+01 5.303321e+01 1.111207e+02 5.231395e+01
#> [621] 7.821083e+01 1.402539e+02 5.329525e+01 8.653913e+01 5.902454e+01
#> [626] 6.408728e+01 8.788421e+01 7.587281e+01 5.582084e+01 9.593742e+01
#> [631] 6.518579e+01 6.092867e+01 6.840205e+01 5.629489e+01 7.497795e+01
#> [636] 7.062564e+01 6.217830e+01 6.238208e+01 7.844451e+01 6.632883e+01
#> [641] 7.005390e+01 6.693388e+01 5.822470e+01 6.268995e+02 6.248807e+01
#> [646] 6.219053e+01 5.803431e+01 6.250776e+01 1.079049e+02 6.690891e+01
#> [651] 7.541871e+01 8.635250e+01 5.691752e+01 5.977472e+01 6.082963e+01
#> [656] 8.417416e+01 7.091111e+01 6.055863e+01 5.788962e+01 7.120420e+01
#> [661] 6.123773e+01 6.121167e+01 5.763520e+01 7.199392e+01 9.332471e+01
#> [666] 6.878162e+01 6.236453e+01 6.348480e+01 5.840379e+01 9.501215e+01
#> [671] 6.546759e+01 6.094825e+01 7.753420e+01 5.532541e+01 6.192886e+01
#> [676] 8.012469e+01 1.919137e+02 9.692380e+01 5.701091e+01 6.915713e+01
#> [681] 5.662040e+01 5.730059e+01 6.891577e+01 2.475929e+02 7.564257e+01
#> [686] 6.390322e+01 6.713730e+01 8.826080e+01 6.149346e+01 6.820387e+01
#> [691] 6.403504e+01 7.791959e+01 6.868908e+01 7.807664e+01 6.734932e+01
#> [696] 6.070792e+01 6.299123e+01 1.171470e+02 5.365545e+01 6.399238e+01
#> [701] 6.023390e+01 6.570339e+01 6.306021e+01 6.149502e+01 6.812842e+01
#> [706] 7.498355e+01 6.121561e+01 9.605137e+01 6.716430e+01 6.306569e+01
#> [711] 5.849785e+01 7.395097e+01 6.503036e+01 9.072546e+01 6.111277e+01
#> [716] 9.221258e+01 7.330316e+01 5.235521e+01 6.219312e+01 7.426765e+01
#> [721] 5.972266e+01 5.874421e+01 6.759686e+01 6.381065e+01 6.227084e+01
#> [726] 5.007509e+01 1.548977e+02 5.752492e+01 6.075536e+01 6.955527e+01
#> [731] 7.658339e+01 1.713307e+02 1.970394e+02 8.831158e+01 1.724690e+02
#> [736] 6.263703e+01 5.719384e+01 5.545490e+01 6.561705e+01 5.740753e+01
#> [741] 7.860462e+01 9.810353e+01 5.736290e+01 5.950772e+01 6.093543e+01
#> [746] 6.451152e+01 7.140396e+01 8.303550e+01 5.850017e+01 6.069155e+01
#> [751] 5.702593e+01 8.499320e+01 7.845259e+01 6.674289e+01 6.966698e+01
#> [756] 6.079266e+01 6.471299e+01 5.455879e+01 8.367095e+01 6.506771e+01
#> [761] 5.694279e+01 9.445148e+01 5.984615e+01 6.938399e+01 9.139069e+01
#> [766] 7.302615e+01 7.018733e+01 1.047356e+02 7.105747e+01 6.248736e+01
#> [771] 6.016086e+01 5.563277e+01 7.449937e+01 5.647351e+01 7.015597e+01
#> [776] 6.956131e+01 7.480210e+01 5.024876e+01 6.117665e+01 6.336161e+01
#> [781] 5.998149e+01 5.967366e+01 6.207817e+01 5.642088e+01 6.852826e+01
#> [786] 6.329435e+01 7.208307e+01 7.704410e+01 7.264122e+01 6.652068e+01
#> [791] 5.971419e+01 5.966041e+01 6.793013e+01 8.372210e+01 7.181547e+01
#> [796] 5.434578e+01 5.332487e+01 1.024303e+02 6.392135e+01 7.404111e+01
#> [801] 2.087826e+02 1.090320e+02 5.518589e+01 1.470730e+02 4.483167e+02
#> [806] 5.073368e+02 6.985436e+01 5.886388e+01 1.871795e+02 7.488275e+02
#> [811] 5.689143e+01 6.964665e+01 6.051030e+01 6.101352e+01 6.610908e+01
#> [816] 6.699403e+01 7.219505e+01 6.100742e+01 6.086371e+01 7.227480e+01
#> [821] 5.745237e+01 7.637769e+01 6.532226e+01 6.071570e+01 7.548499e+01
#> [826] 1.509137e+02 2.199824e+02 5.725873e+01 5.957895e+01 1.524719e+03
#> [831] 1.096545e+02 6.866948e+01 8.784838e+01 6.227365e+01 1.340387e+02
#> [836] 5.596564e+01 6.021717e+01 7.602845e+01 5.612334e+01 5.821497e+01
#> [841] 6.693939e+01 6.292282e+01 6.614962e+01 5.809204e+01 6.065319e+01
#> [846] 8.118930e+01 8.775445e+01 8.536796e+01 9.139428e+01 6.547182e+01
#> [851] 7.115626e+01 6.341136e+01 5.970902e+01 9.041326e+01 6.077139e+01
#> [856] 7.924645e+01 6.337941e+01 5.483016e+01 6.197700e+01 6.642226e+01
#> [861] 5.753143e+01 5.637249e+01 6.295303e+01 7.283406e+01 7.546204e+01
#> [866] 5.552635e+01 6.183429e+01 5.572593e+01 5.923626e+01 8.746716e+01
#> [871] 7.432780e+01 6.506329e+01 8.023323e+01 8.943457e+01 6.175619e+01
#> [876] 6.057525e+01 5.852610e+01 7.314485e+01 1.668657e+02 5.381171e+02
#> [881] 1.277545e+02 2.432069e+03 2.454276e+02 5.499485e+02 1.170380e+02
#> [886] 5.434695e+01 7.688648e+01 2.517005e+02 6.115414e+01 9.230003e+01
#> [891] 4.981550e+01 6.084783e+01 1.818303e+03 8.907692e+01 6.056966e+01
#> [896] 5.655362e+01 7.956451e+01 6.058930e+01 4.968063e+01 6.191695e+01
#> [901] 6.364037e+01 6.060942e+01 5.902393e+01 6.486392e+01 7.229398e+01
#> [906] 6.139142e+01 5.501626e+01 1.175199e+02 1.393401e+02 1.807726e+02
#> [911] 1.592985e+02 5.867506e+01 7.860957e+01 6.860189e+01 6.061627e+01
#> [916] 9.954001e+01 5.850595e+01 6.921699e+01 5.701215e+01 5.769182e+01
#> [921] 7.041761e+01 6.067314e+01 5.899326e+01 6.380592e+01 6.244151e+01
#> [926] 4.117752e+02 6.755501e+01 8.081554e+01 5.704639e+01 7.655208e+01
#> [931] 5.980370e+01 5.626061e+01 6.783852e+02 2.574885e+02 5.640577e+01
#> [936] 6.697361e+01 7.348920e+01 7.536708e+01 5.925683e+01 6.292072e+01
#> [941] 8.436697e+01 6.157704e+01 1.045807e+02 5.865791e+01 7.382793e+01
#> [946] 8.127527e+01 5.982292e+01 5.826075e+01 5.464341e+01 6.581439e+01
#> [951] 6.146512e+01 6.267655e+01 8.196677e+01 1.422554e+02 5.787314e+01
#> [956] 5.673255e+01 3.566252e+02 1.645159e+02 5.545118e+01 7.726515e+01
#> [961] 7.295521e+01 7.963969e+01 6.132416e+01 6.802687e+01 5.948313e+01
#> [966] 1.103772e+02 7.720747e+01 1.372902e+02 7.059910e+01 9.652916e+01
#> [971] 5.709772e+01 6.520637e+01 9.796579e+02 1.656640e+11 6.479304e+01
#> [976] 6.401871e+01 6.115976e+01 6.141821e+01 6.261964e+01 5.779992e+01
#> [981] 5.739423e+01 6.450017e+01 8.004493e+01 6.625940e+01 8.492204e+01
#> [986] 1.920947e+02 5.783616e+01 8.394805e+01 1.113609e+02 8.643059e+01
#> [991] 6.548937e+01 7.237918e+01 8.121458e+01 1.053877e+02 6.155173e+01
#> [996] 7.201676e+01 5.453019e+01 5.540462e+01 5.707365e+01 8.882503e+01