
Compute Gain Values based on Pseudo DLE and a Pseudo Efficacy Models and Using Optional Samples.
Source:R/Model-methods.R
gain.Rd
Usage
gain(dose, model_dle, samples_dle, model_eff, samples_eff, ...)
# S4 method for class 'numeric,ModelTox,Samples,ModelEff,Samples'
gain(dose, model_dle, samples_dle, model_eff, samples_eff, ...)
# S4 method for class 'numeric,ModelTox,missing,Effloglog,missing'
gain(dose, model_dle, samples_dle, model_eff, samples_eff, ...)
Arguments
- dose
(
number
ornumeric
)
the dose which is targeted. The following recycling rule applies when samples are not missing: vectors of size 1 will be recycled to the size of the sample. Otherwise,dose
must have the same size as the sample.- model_dle
(
ModelTox
)
pseudo DLE (dose-limiting events)/toxicity model.- samples_dle
(
Samples
)
the samples of model's parameters that will be used to compute toxicity probabilities. Can also be missing for some models.- model_eff
(
ModelEff
)
the efficacy model with pseudo data prior.- samples_eff
(
Samples
)
samples of model's parameters that will be used to compute expected efficacy values. Can also be missing for some models.- ...
not used.
Details
This function computes the gain values for a given dose level, pseudo DLE and Efficacy models as well as a given DLE and Efficacy samples.
Functions
gain( dose = numeric, model_dle = ModelTox, samples_dle = Samples, model_eff = ModelEff, samples_eff = Samples )
:gain( dose = numeric, model_dle = ModelTox, samples_dle = missing, model_eff = Effloglog, samples_eff = missing )
: Compute the gain value for a given dose level, pseudo DLE and Efficacy models without DLE and the Efficacy samples.
Examples
# Obtain the gain value for a given dose, a pseudo DLE and efficacy models
# as well as DLE and efficacy samples.
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)
mcmc_opts <- McmcOptions(burnin = 100, step = 2, samples = 200)
# DLE model and samples.
model_dle <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = emptydata
)
samples_dle <- mcmc(emptydata, model_dle, mcmc_opts)
# Efficacy model (Effloglog) and samples.
model_effloglog <- Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata
)
samples_effloglog <- mcmc(emptydata, model_effloglog, mcmc_opts)
# Gain values for dose level 75 and Effloglog efficacy model.
gain(
dose = 75,
model_dle = model_dle,
samples_dle = samples_dle,
model_eff = model_effloglog,
samples_eff = samples_effloglog
)
#> [1] 1.3724463 1.1163011 1.1876543 0.5601303 1.6102540 0.6156309 1.0702110
#> [8] 1.4812699 1.4689083 0.5991908 0.9135514 1.4188588 0.8914392 0.9510920
#> [15] 0.9962461 0.8646416 1.4064603 0.6449197 0.6616455 0.8855359 0.6516058
#> [22] 0.4573677 0.2922851 1.5184059 0.7864663 0.7575013 0.6550523 1.4341707
#> [29] 0.6397446 0.5902374 1.3455265 0.5084815 0.6228258 0.2742999 1.1028332
#> [36] 1.2683656 1.4552391 1.7914810 1.2640065 0.8954424 0.4557674 0.7072762
#> [43] 0.6508919 0.9339104 0.6563602 1.0341947 0.5346614 0.9638692 1.2067207
#> [50] 1.3048691 1.3450987 0.2951774 1.2150462 1.2154166 0.6994934 0.9380233
#> [57] 1.6054284 1.4631007 0.7170195 1.1514112 1.2336247 0.7694697 0.6456181
#> [64] 1.2906157 1.3531875 0.9304359 1.2255894 1.2325904 1.2405950 1.7368240
#> [71] 0.8030362 1.3514498 1.2226824 0.4009393 1.0961200 1.3827692 1.3408870
#> [78] 1.0155697 1.3858920 0.7852963 1.0389329 0.7076404 0.9516520 1.2265820
#> [85] 0.6453395 1.1631187 1.1300966 1.0829065 1.3729595 0.6465427 0.9005294
#> [92] 1.0391913 1.0106432 1.2346600 0.9347928 0.4895462 0.4382956 1.3669563
#> [99] 1.2218775 0.8111870 0.4934214 1.1457987 1.1405332 1.1489580 1.4535811
#> [106] 0.3077070 1.2252347 1.5443211 1.3362472 1.1712998 1.0014473 1.1369257
#> [113] 0.8171996 0.2649928 1.1712471 0.4232131 1.0481358 1.4055183 1.3802208
#> [120] 1.1189702 0.9606329 1.2678369 1.2700036 0.5651039 1.8531221 1.5108585
#> [127] 1.5765327 1.1742238 1.5648763 1.0839926 0.9758415 0.8558122 1.1538830
#> [134] 1.1561811 1.4922312 0.9087434 0.6369058 1.1785576 1.2719208 0.7536225
#> [141] 0.4610063 1.0802367 1.2740320 0.7842036 1.5808339 1.4593170 0.6581335
#> [148] 0.5965571 1.1217183 1.6115560 0.9235499 1.4685061 0.9808467 0.4309496
#> [155] 1.4693931 1.1060406 1.7424236 0.6815545 0.9528618 1.3946497 1.0070073
#> [162] 0.9412750 0.6710952 1.3174514 1.4569902 0.9076429 0.1721784 0.6274587
#> [169] 1.0012481 0.6883088 1.0717720 1.3573660 1.2150049 1.7473766 1.1468327
#> [176] 0.6136378 1.1348749 1.0056950 1.2825347 1.2099100 1.1442010 1.3166977
#> [183] 0.6235300 1.0662774 0.8839399 0.8752322 1.2075558 0.8035865 1.1490294
#> [190] 0.8053042 0.8663338 1.7354374 0.9656245 0.7848750 1.0084461 1.1694038
#> [197] 1.1076468 1.2395853 1.3728410 1.1775367
# Efficacy model (EffFlexi) and samples.
model_effflexi <- EffFlexi(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = emptydata
)
samples_effflexi <- mcmc(emptydata, model_effflexi, mcmc_opts)
# Gain values for dose level 75 and EffFlexi efficacy model.
gain(
dose = 75,
model_dle = model_dle,
samples_dle = samples_dle,
model_eff = model_effflexi,
samples_eff = samples_effflexi
)
#> [1] -7.797762012 -0.199336986 2.523438672 0.214818998 -0.547251404
#> [6] -0.828895061 -0.077208139 4.198925893 -2.514839633 -0.993067176
#> [11] -2.132389402 3.077140329 1.501540022 0.965118633 2.448944419
#> [16] 1.603548539 0.184034225 0.557697919 -1.952719644 2.492728818
#> [21] -0.846354589 1.614736279 0.041034314 -1.658099056 0.062305215
#> [26] 0.929473739 1.467771682 5.695943231 2.757768442 -0.081225987
#> [31] 6.972030665 3.929777824 0.289435533 0.816732419 2.506860558
#> [36] -0.425530328 -2.334480198 0.586245417 -3.720766029 0.137125761
#> [41] 1.426266668 2.928028475 2.507657658 0.594944379 1.404831845
#> [46] -1.769188692 2.344694257 2.425595600 -3.724049447 5.721211847
#> [51] 1.240789611 0.661480509 -0.935456834 1.859864240 3.598570254
#> [56] 4.066092601 -0.283984842 -1.789499719 2.291953834 -0.340493900
#> [61] 2.729746082 3.088494146 0.002428012 5.549212571 2.237065518
#> [66] -1.146073828 -1.215629407 4.093263442 4.365740674 -3.579946118
#> [71] 0.868637136 -0.796092404 1.728214732 1.480074653 3.188259955
#> [76] 1.805344902 -1.316897949 0.917944815 2.347651429 -2.057661335
#> [81] 1.924687634 -0.059670211 2.093612794 -0.844486312 -1.187736649
#> [86] 4.166443525 -6.163708089 -2.062453988 0.389062104 -0.293947515
#> [91] 3.633662621 7.428196399 -0.427327028 0.842044527 1.278787634
#> [96] -1.228131627 1.172618349 7.690292673 -2.492784535 1.276139945
#> [101] 0.093697215 -0.505052555 -0.776274633 0.063380404 -2.593648360
#> [106] 0.261357399 -1.711652634 1.622242271 -0.362393167 4.461089005
#> [111] 3.450033563 6.051686737 -1.351043509 1.375461317 -3.742672152
#> [116] 0.242883309 -3.645677222 4.822342119 2.679937625 2.173108830
#> [121] 0.348438489 0.070456192 4.777059451 5.306383005 3.369429858
#> [126] 6.363568789 2.947605736 0.669428991 -4.638862209 -0.544622733
#> [131] 0.993147986 0.850065911 4.797947307 -0.434228667 -0.487685678
#> [136] -0.263474416 -0.130119997 -1.364954217 1.327120227 1.435113453
#> [141] 1.800903129 2.340832586 -2.214719403 -2.190862346 -1.090888958
#> [146] -0.571400968 1.106625717 3.326360639 0.832149924 4.986322978
#> [151] 4.470591160 -0.643807544 3.225924662 1.616645210 -3.171086291
#> [156] -1.400515992 -7.580812166 -1.147022482 3.689024159 5.515599083
#> [161] -0.133504677 1.728566992 2.175123544 8.539899820 2.385615370
#> [166] 6.408512552 -0.585672716 -1.243101730 7.299838519 0.975173504
#> [171] 4.320059944 -4.355521566 -0.778941163 2.320029619 4.591606364
#> [176] 1.794935961 3.213033813 -1.320620632 3.283390555 3.408311801
#> [181] 2.528529997 0.216659653 -0.362232228 0.796268488 3.334793341
#> [186] 3.359729037 3.392465865 1.565422596 5.336320093 -0.466097505
#> [191] 1.968541610 3.428795440 -0.408071475 1.622276788 -4.710188753
#> [196] -1.358776379 1.004604940 2.729044949 2.522123248 -0.558105107
# Obtain the gain value for a given dose, a pseudo DLE and efficacy models
# without DLE and efficacy samples.
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)
data <- Data(doseGrid = seq(25, 300, 25), placebo = FALSE)
mcmc_opts <- McmcOptions(burnin = 100, step = 2, samples = 200)
# DLE model and samples.
model_dle <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data
)
# Efficacy model and samples.
model_eff <- Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata
)
# Gain value for dose level 75.
gain(
dose = 75,
model_dle = model_dle,
model_eff = model_eff
)
#> [1] 1.020657