Compute Gain Values based on Pseudo DLE and a Pseudo Efficacy Models and Using Optional Samples.
Source:R/Model-methods.R
gain.Rd
Usage
gain(dose, model_dle, samples_dle, model_eff, samples_eff, ...)
# S4 method for class 'numeric,ModelTox,Samples,ModelEff,Samples'
gain(dose, model_dle, samples_dle, model_eff, samples_eff, ...)
# S4 method for class 'numeric,ModelTox,missing,Effloglog,missing'
gain(dose, model_dle, samples_dle, model_eff, samples_eff, ...)
Arguments
- dose
(
number
ornumeric
)
the dose which is targeted. The following recycling rule applies when samples are not missing: vectors of size 1 will be recycled to the size of the sample. Otherwise,dose
must have the same size as the sample.- model_dle
(
ModelTox
)
pseudo DLE (dose-limiting events)/toxicity model.- samples_dle
(
Samples
)
the samples of model's parameters that will be used to compute toxicity probabilities. Can also be missing for some models.- model_eff
(
ModelEff
)
the efficacy model with pseudo data prior.- samples_eff
(
Samples
)
samples of model's parameters that will be used to compute expected efficacy values. Can also be missing for some models.- ...
not used.
Details
This function computes the gain values for a given dose level, pseudo DLE and Efficacy models as well as a given DLE and Efficacy samples.
Functions
gain( dose = numeric, model_dle = ModelTox, samples_dle = Samples, model_eff = ModelEff, samples_eff = Samples )
:gain( dose = numeric, model_dle = ModelTox, samples_dle = missing, model_eff = Effloglog, samples_eff = missing )
: Compute the gain value for a given dose level, pseudo DLE and Efficacy models without DLE and the Efficacy samples.
Examples
# Obtain the gain value for a given dose, a pseudo DLE and efficacy models
# as well as DLE and efficacy samples.
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)
mcmc_opts <- McmcOptions(burnin = 100, step = 2, samples = 200)
# DLE model and samples.
model_dle <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = emptydata
)
samples_dle <- mcmc(emptydata, model_dle, mcmc_opts)
# Efficacy model (Effloglog) and samples.
model_effloglog <- Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata
)
samples_effloglog <- mcmc(emptydata, model_effloglog, mcmc_opts)
# Gain values for dose level 75 and Effloglog efficacy model.
gain(
dose = 75,
model_dle = model_dle,
samples_dle = samples_dle,
model_eff = model_effloglog,
samples_eff = samples_effloglog
)
#> [1] 0.6408328 0.9328737 1.3317937 0.9755601 1.5632863 0.6305203 0.9138837
#> [8] 1.3243097 1.6300890 0.6922057 0.6948791 1.1977047 0.7107659 1.3493244
#> [15] 1.1315107 0.5192456 1.6181089 1.1255197 0.6139932 1.1130316 0.2994175
#> [22] 0.7625404 0.2999797 0.8641572 1.2187100 1.2814324 0.3824490 0.9207420
#> [29] 1.1403403 0.3695379 1.4697527 0.9047391 0.4072838 0.4086533 0.9336283
#> [36] 1.0253846 1.2746207 1.2389333 1.5941384 1.1963421 0.5599394 0.5972302
#> [43] 1.0144189 0.8002580 0.4502802 1.1163495 0.5809296 1.4244017 0.9590778
#> [50] 1.2828274 1.5297917 0.8138715 0.7212816 1.4461675 1.0349981 0.7453069
#> [57] 1.0210496 1.2419379 1.3741230 1.0986051 0.8758285 1.1735655 0.5976080
#> [64] 0.8904322 1.6233541 0.8059716 1.4919759 1.1787462 1.0145394 1.3836082
#> [71] 1.2268082 1.1704848 1.2750769 0.9169179 0.5963439 1.5454189 0.7963324
#> [78] 1.7116639 0.9309376 0.9485817 0.9387339 1.1573696 0.6048362 0.9319197
#> [85] 1.1612720 0.9907762 0.9403920 1.1415660 1.3232608 0.9664984 0.6543996
#> [92] 0.9952130 0.8423264 1.0979808 0.7735316 1.0236896 0.3128155 0.7172526
#> [99] 1.2987465 1.3156077 0.8861968 0.8041023 1.3887307 0.7626237 1.0574967
#> [106] 0.5654114 0.9387753 1.1332396 1.3187461 1.3750455 1.2840815 1.0980457
#> [113] 0.5106619 0.3654438 0.9253451 0.8131477 0.9423602 1.2746120 1.4926014
#> [120] 1.2882855 0.9578128 0.6690747 1.7255752 0.6915817 1.1805667 1.5462893
#> [127] 1.4799990 1.2547675 1.4885465 1.5331700 0.8000799 0.9242831 0.8972873
#> [134] 0.5822894 1.4211837 1.4711264 1.0189077 1.1383444 0.5706135 1.3398664
#> [141] 0.6468929 0.4029541 1.3724370 1.1276486 1.0439208 1.5059942 1.3998324
#> [148] 0.1770508 1.4076756 1.1154960 1.5349931 1.0484810 1.4391473 0.4710791
#> [155] 0.5403335 0.7005458 1.8050641 1.4848396 0.7156361 1.3325150 0.7362993
#> [162] 1.3438726 0.8285547 0.3849198 1.5678709 1.2341540 0.5106456 0.2668566
#> [169] 0.5504141 1.3424511 0.9247626 1.0576609 1.3647710 1.7021687 1.6352920
#> [176] 0.3140200 1.0421455 1.1013259 1.5020743 0.6462236 1.4313372 1.3540828
#> [183] 0.7369552 0.6403422 0.9502782 1.2130977 0.7939327 1.1204203 1.1277037
#> [190] 1.3037997 0.3774526 1.2877474 0.9799113 0.8576480 1.0937620 1.1248835
#> [197] 1.2573625 1.4749750 0.8422842 1.3569855
# Efficacy model (EffFlexi) and samples.
model_effflexi <- EffFlexi(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = emptydata
)
samples_effflexi <- mcmc(emptydata, model_effflexi, mcmc_opts)
# Gain values for dose level 75 and EffFlexi efficacy model.
gain(
dose = 75,
model_dle = model_dle,
samples_dle = samples_dle,
model_eff = model_effflexi,
samples_eff = samples_effflexi
)
#> [1] -3.641258479 -0.166594269 2.829620278 0.373952783 -0.531216668
#> [6] -0.849105460 -0.065925460 3.754745902 -2.791016053 -1.147059424
#> [11] -1.622033918 2.597111740 1.197175328 1.369203404 2.781684703
#> [16] 0.962836870 0.211708598 0.973357798 -1.811698890 3.131962728
#> [21] -0.389066338 2.691613664 0.042115612 -0.943475453 0.096550011
#> [26] 1.572014038 0.857323140 3.656854731 4.916892544 -0.050870353
#> [31] 7.615495164 6.990399000 0.189376787 1.216857254 2.122802942
#> [36] -0.343985681 -2.044233401 0.405325747 -4.692310210 0.183203671
#> [41] 1.751732491 2.472171778 3.907644282 0.509817220 0.963978404
#> [46] -1.910024280 2.548437823 3.584017283 -2.961184300 5.625251529
#> [51] 1.411365107 1.823892403 -0.555407059 2.214243352 5.325509511
#> [56] 3.230107442 -0.180554045 -1.519353539 4.392940449 -0.324944427
#> [61] 1.937776867 4.713343578 0.002247316 3.826853736 2.683337672
#> [66] -0.992753550 -1.479189994 3.914210627 3.570068719 -2.851355623
#> [71] 1.326984049 -0.689519459 1.802278904 3.385245313 1.734210398
#> [76] 2.017888700 -0.782043480 1.546538605 1.576855927 -2.485716994
#> [81] 1.739378275 -0.097576690 1.330695648 -0.641331468 -2.137687696
#> [86] 3.549640751 -5.127964328 -2.174882417 0.374979399 -0.439305187
#> [91] 2.640830551 7.110037040 -0.355985551 0.748719357 1.057974680
#> [96] -2.568168383 0.837028308 4.035940395 -2.650119496 2.069409492
#> [101] 0.168311973 -0.354353317 -0.945395850 0.042061322 -1.886457022
#> [106] 0.480350580 -1.311068287 1.189967273 -0.357601100 5.239007064
#> [111] 4.423448654 5.845130739 -0.844561461 1.896738757 -2.956209402
#> [116] 0.466760455 -3.277578269 4.374041653 2.898278267 2.501704743
#> [121] 0.347510835 0.037178121 6.489170359 6.496274308 2.145448273
#> [126] 6.512057312 2.766912660 0.715474276 -4.413271023 -0.770319686
#> [131] 0.814217755 0.918800050 3.731321024 -0.218731762 -0.464509686
#> [136] -0.426412729 -0.208224708 -1.318230637 0.595482918 2.551353508
#> [141] 2.526157319 0.873345642 -2.385976068 -3.150363936 -0.720407718
#> [146] -0.589728368 2.352961488 0.987534174 1.044477211 3.451487245
#> [151] 7.431615588 -0.459645433 4.732831808 1.766993618 -1.165560079
#> [156] -0.887049698 -7.853038676 -2.497354236 2.770452213 5.268456605
#> [161] -0.097615890 2.467869827 2.685456166 2.494766869 2.567079551
#> [166] 8.717333592 -1.737184651 -0.528517049 4.013972818 1.902246000
#> [171] 3.727450039 -3.394227948 -0.874971561 2.259698149 6.547521168
#> [176] 0.918450022 2.950616237 -1.445793249 3.845205913 1.820144472
#> [181] 3.163183920 0.222833102 -0.428068347 0.478277681 3.585246116
#> [186] 4.655750990 2.230958985 2.182741536 5.235442639 -0.754730037
#> [191] 0.857802805 2.543688576 -0.414278366 1.772843364 -5.108692368
#> [196] -1.306825956 1.140343944 3.245963440 1.547776394 -0.642978970
# Obtain the gain value for a given dose, a pseudo DLE and efficacy models
# without DLE and efficacy samples.
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)
data <- Data(doseGrid = seq(25, 300, 25), placebo = FALSE)
mcmc_opts <- McmcOptions(burnin = 100, step = 2, samples = 200)
# DLE model and samples.
model_dle <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data
)
# Efficacy model and samples.
model_eff <- Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata
)
# Gain value for dose level 75.
gain(
dose = 75,
model_dle = model_dle,
model_eff = model_eff
)
#> [1] 1.020657