Plotting dose-toxicity and dose-biomarker model fits
Source:R/Samples-methods.R
plot-Samples-DualEndpoint-method.Rd
When we have the dual endpoint model, also the dose-biomarker fit is shown in the plot
Usage
# S4 method for class 'Samples,DualEndpoint'
plot(x, y, data, extrapolate = TRUE, showLegend = FALSE, ...)
Arguments
- x
the
Samples
object- y
the
DualEndpoint
object- data
the
DataDual
object- extrapolate
should the biomarker fit be extrapolated to the whole dose grid? (default)
- showLegend
should the legend be shown? (not default)
- ...
additional arguments for the parent method
plot,Samples,GeneralModel-method
Value
This returns the ggplot
object with the dose-toxicity and dose-biomarker model fits
Examples
# nolint start
# Create some data
data <- DataDual(
x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10,
20, 20, 20, 40, 40, 40, 50, 50, 50),
y=c(0, 0, 0, 0, 0, 0, 1, 0,
0, 1, 1, 0, 0, 1, 0, 1, 1),
w=c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.55, 0.6,
0.52, 0.54, 0.56, 0.43, 0.41, 0.39, 0.34, 0.38, 0.21),
doseGrid=c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
#> Used default patient IDs!
#> Used best guess cohort indices!
# Initialize the Dual-Endpoint model (in this case RW1)
model <- DualEndpointRW(mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow=2),
sigma2betaW = 0.01,
sigma2W = c(a=0.1, b=0.1),
rho = c(a=1, b=1),
rw1 = TRUE)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=500)
set.seed(94)
samples <- mcmc(data, model, options)
# Plot the posterior mean (and empirical 2.5 and 97.5 percentile)
# for the prob(DLT) by doses and the Biomarker by doses
#grid.arrange(plot(x = samples, y = model, data = data))
plot(x = samples, y = model, data = data)
# nolint end