Simulate outcomes from a rule-based design
Usage
# S4 method for class 'RuleDesign'
simulate(
object,
nsim = 1L,
seed = NULL,
truth,
args = NULL,
parallel = FALSE,
nCores = min(parallel::detectCores(), 5L),
...
)
Arguments
- object
the
RuleDesign
object we want to simulate data from- nsim
the number of simulations (default: 1)
- seed
see
set_seed
- truth
a function which takes as input a dose (vector) and returns the true probability (vector) for toxicity. Additional arguments can be supplied in
args
.- args
data frame with arguments for the
truth
function. The column names correspond to the argument names, the rows to the values of the arguments. The rows are appropriately recycled in thensim
simulations.- parallel
should the simulation runs be parallelized across the clusters of the computer? (not default)
- nCores
how many cores should be used for parallel computing? Defaults to the number of cores on the machine, maximum 5.
- ...
not used
Value
an object of class GeneralSimulations
Examples
# nolint start
# Define the dose-grid
emptydata <- Data(doseGrid = c(5, 10, 15, 25, 35, 50, 80))
# inizialing a 3+3 design with constant cohort size of 3 and
# starting dose equal 5
myDesign <- RuleDesign(
nextBest = NextBestThreePlusThree(),
cohort_size = CohortSizeConst(size = 3L),
data = emptydata,
startingDose = 5
)
model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50
)
## define the true function
myTruth <- probFunction(model, alpha0 = 7, alpha1 = 8)
# Perform the simulation
## For illustration purpose only 10 simulation is produced (nsim=10).
threeSims <- simulate(myDesign,
nsim = 10,
seed = 35,
truth = myTruth,
parallel = FALSE
)
# nolint end