Usage
# S4 method for class 'RuleDesign'
simulate(
object,
nsim = 1L,
seed = NULL,
truth,
args = NULL,
parallel = FALSE,
nCores = min(parallel::detectCores(), 5L),
...
)Arguments
- object
the
RuleDesignobject we want to simulate data from- nsim
(
count)
the number of simulations (default: 1)- seed
see
set_seed()- truth
(
function)
a function which takes as input a dose (vector) and returns the true probability (vector) for toxicity. Additional arguments can be supplied inargs.- args
(
data.frame)
data frame with arguments for thetruthfunction. The column names correspond to the argument names, the rows to the values of the arguments. The rows are appropriately recycled in thensimsimulations.- parallel
(
flag)
should the simulation runs be parallelized across the clusters of the computer? (not default)- nCores
(
count)
how many cores should be used for parallel computing? Defaults to the number of cores on the machine, maximum 5.- ...
not used
Value
an object of class GeneralSimulations
Examples
# nolint start
# Define the dose-grid
emptydata <- Data(doseGrid = c(5, 10, 15, 25, 35, 50, 80))
# inizialing a 3+3 design with constant cohort size of 3 and
# starting dose equal 5
myDesign <- RuleDesign(
nextBest = NextBestThreePlusThree(),
cohort_size = CohortSizeConst(size = 3L),
data = emptydata,
startingDose = 5
)
model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50
)
## define the true function
myTruth <- probFunction(model, alpha0 = 7, alpha1 = 8)
# Perform the simulation
## For illustration purpose only 10 simulation is produced (nsim=10).
threeSims <- simulate(
myDesign,
nsim = 10,
seed = 35,
truth = myTruth,
parallel = FALSE
)
# nolint end
