Changelog
Source:NEWS.md
brms.mmrm 1.1.1
- Use FEV data in usage vignette.
- Show how to visualize prior vs posterior in the usage vignette.
- Add a
center
argument tobrms_formula.default()
and explain intercept parameter interpretation concerns (#128).
brms.mmrm 1.1.0
CRAN release: 2024-07-29
- Add
brm_marginal_grid()
. - Show posterior samples of
sigma
inbrm_marginal_draws()
andbrm_marginal_summaries()
. - Allow
outcome = "response"
withreference_time = NULL
. Sometimes raw response is analyzed but the data has no baseline time point. - Preserve factors in
brm_data()
and encourage ordered factors for the time variable (#113). - Add
brm_data_chronologize()
to ensure the correctness of the time variable. - Do not drop columns in
brm_data()
. This helpsbrm_data_chronologize()
operate correctly after calls tobrm_data()
. - Add new elements
brms.mmrm_data
andbrms.mmrm_formula
to thebrms
fitted model object returned bybrm_model()
. - Take defaults
data
andformula
from the above inbrm_marginal_draws()
. - Set the default value of
effect_size
toattr(formula, "brm_allow_effect_size")
. - Remove defaults from some arguments to
brm_data()
and document examples. - Deprecate the
role
argument ofbrm_data()
in favor ofreference_time
(#119). - Add a new
model_missing_outcomes
inbrm_formula()
to optionally impute missing values during model fitting as described at https://paulbuerkner.com/brms/articles/brms_missings.html (#121). - Add a new
imputed
argument to accept amice
multiply imputed dataset (“mids”) inbrm_model()
(#121). - Add a
summary()
method forbrm_transform_marginal()
objects. - Do not recheck the rank of the formula in
brm_transform_marginal()
. - Support constrained longitudinal data analysis (cLDA) for informative prior archetypes
brm_archetype_cells()
,brm_archetype_effects()
,brm_archetype_successive_cells()
, andbrm_archetype_successive_effects()
(#125). We cannot support cLDA forbrm_archetype_average_cells()
orbrm_archetype_average_effects()
because then some parameters would no longer be averages of others.
brms.mmrm 1.0.1
CRAN release: 2024-06-25
- Handle outcome
NA
s inget_draws_sigma()
. - Improve
summary()
messages for informative prior archetypes. - Rewrite the
archetypes.Rmd
vignette using the FEV dataset from themmrm
package. - Add
brm_prior_template()
.
brms.mmrm 1.0.0
CRAN release: 2024-06-04
New features
- Add informative prior archetypes (#96, #101).
- Add [brm_formula_sigma()] to allow more flexibility for modeling standard deviations as distributional parameters (#102). Due to the complexities of computing marginal means of standard deviations in rare scenarios, [brm_marginal_draws()] does not return effect size if [brm_formula_sigma()] uses baseline or covariates.
Guardrails to ensure the appropriateness of marginal mean estimation
- Require a new
formula
argument inbrm_marginal_draws()
. - Change class name
"brm_data"
to"brms_mmrm_data"
to align with other class names. - Create a special
"brms_mmrm_formula"
class to wrap around the model formula. The class ensures that formulas passed to the model were created bybrms_formula()
, and the attributes store the user’s choice of fixed effects. - Create a special
"brms_mmrm_model"
class for fitted model objects. The class ensures that fitted models were created bybrms_model()
, and the attributes store the"brms_mmrm_formula"
object in a way thatbrms
itself cannot modify. - Deprecate
use_subgroup
inbrm_marginal_draws()
. The subgroup is now always part of the reference grid when declared inbrm_data()
. To marginalize over subgroup, declare it incovariates
instead. - Prevent overplotting multiple subgroups in
brm_plot_compare()
. - Update the subgroup vignette to reflect all the changes above.
Custom estimation of marginal means
- Implement a new
brm_transform_marginal()
to transform model parameters to marginal means (#53). - Use
brm_transform_marginal()
instead ofemmeans
inbrm_marginal_draws()
to derive posterior draws of marginal means based on posterior draws of model parameters (#53). - Explain the custom marginal mean calculation in a new
inference.Rmd
vignette. - Rename
methods.Rmd
tomodel.Rmd
sinceinference.Rmd
also discusses methods.
Other improvements
- Extend
brm_formula()
andbrm_marginal_draws()
to optionally model homogeneous variances, as well as ARMA, AR, MA, and compound symmetry correlation structures. - Restrict
brm_model()
to continuous families with identity links. - In
brm_prior_simple()
, deprecate thecorrelation
argument in favor of individual correlation-specific arguments such asunstructured
andcompound_symmetry
. - Ensure model matrices are full rank (#99).
brms.mmrm 0.1.0
CRAN release: 2024-02-15
- Deprecate
brm_simulate()
in favor ofbrm_simulate_simple()
(#3). The latter has a more specific name to disambiguate it from other simulation functions, and its parameterization conforms to the one in the methods vignette. - Add new functions for nuanced simulations:
brm_simulate_outline()
,brm_simulate_continuous()
,brm_simulate_categorical()
(#3). - In
brm_model()
, remove rows with missing responses. These rows are automatically removed bybrms
anyway, and by handling by handling this inbrms.mmrm
, we avoid a warning. - Add subgroup analysis functionality and validate the subgroup model with simulation-based calibration (#18).
- Zero-pad numeric indexes in simulated data so the levels sort as expected.
- In
brm_data()
, deprecatelevel_control
in favor ofreference_group
. - In
brm_data()
, deprecatelevel_baseline
in favor ofreference_time
. - In
brm_formula()
, deprecate argumentseffect_baseline
,effect_group
,effect_time
,interaction_baseline
, andinteraction_group
in favor ofbaseline
,group
,time
,baseline_time
, andgroup_time
, respectively. - Propagate values in the
missing
column inbrm_data_change()
such that a value in the change from baseline is labeled missing if either the baseline response is missing or the post-baseline response is missing. - Change the names in the output of
brm_marginal_draws()
to be more internally consistent and fit better with the addition of subgroup-specific marginals (#18). - Allow
brm_plot_compare()
andbrm_plot_draws()
to select the x axis variable and faceting variables. - Allow
brm_plot_compare()
to choose the primary comparison of interest (source of the data, discrete time, treatment group, or subgroup level).