brms.mmrm 1.1.1
CRAN release: 2024-10-02
- Use FEV data in usage vignette.
- Show how to visualize prior vs posterior in the usage vignette.
- Add a
centerargument tobrms_formula.default()and explain intercept parameter interpretation concerns (#128).
brms.mmrm 1.1.0
CRAN release: 2024-07-29
- Add
brm_marginal_grid(). - Show posterior samples of
sigmainbrm_marginal_draws()andbrm_marginal_summaries(). - Allow
outcome = "response"withreference_time = NULL. Sometimes raw response is analyzed but the data has no baseline time point. - Preserve factors in
brm_data()and encourage ordered factors for the time variable (#113). - Add
brm_data_chronologize()to ensure the correctness of the time variable. - Do not drop columns in
brm_data(). This helpsbrm_data_chronologize()operate correctly after calls tobrm_data(). - Add new elements
brms.mmrm_dataandbrms.mmrm_formulato thebrmsfitted model object returned bybrm_model(). - Take defaults
dataandformulafrom the above inbrm_marginal_draws(). - Set the default value of
effect_sizetoattr(formula, "brm_allow_effect_size"). - Remove defaults from some arguments to
brm_data()and document examples. - Deprecate the
roleargument ofbrm_data()in favor ofreference_time(#119). - Add a new
model_missing_outcomesinbrm_formula()to optionally impute missing values during model fitting as described at https://paulbuerkner.com/brms/articles/brms_missings.html (#121). - Add a new
imputedargument to accept amicemultiply imputed dataset (“mids”) inbrm_model()(#121). - Add a
summary()method forbrm_transform_marginal()objects. - Do not recheck the rank of the formula in
brm_transform_marginal(). - Support constrained longitudinal data analysis (cLDA) for informative prior archetypes
brm_archetype_cells(),brm_archetype_effects(),brm_archetype_successive_cells(), andbrm_archetype_successive_effects()(#125). We cannot support cLDA forbrm_archetype_average_cells()orbrm_archetype_average_effects()because then some parameters would no longer be averages of others.
brms.mmrm 1.0.1
CRAN release: 2024-06-25
- Handle outcome
NAs inget_draws_sigma(). - Improve
summary()messages for informative prior archetypes. - Rewrite the
archetypes.Rmdvignette using the FEV dataset from themmrmpackage. - Add
brm_prior_template().
brms.mmrm 1.0.0
CRAN release: 2024-06-04
New features
- Add informative prior archetypes (#96, #101).
- Add [brm_formula_sigma()] to allow more flexibility for modeling standard deviations as distributional parameters (#102). Due to the complexities of computing marginal means of standard deviations in rare scenarios, [brm_marginal_draws()] does not return effect size if [brm_formula_sigma()] uses baseline or covariates.
Guardrails to ensure the appropriateness of marginal mean estimation
- Require a new
formulaargument inbrm_marginal_draws(). - Change class name
"brm_data"to"brms_mmrm_data"to align with other class names. - Create a special
"brms_mmrm_formula"class to wrap around the model formula. The class ensures that formulas passed to the model were created bybrms_formula(), and the attributes store the user’s choice of fixed effects. - Create a special
"brms_mmrm_model"class for fitted model objects. The class ensures that fitted models were created bybrms_model(), and the attributes store the"brms_mmrm_formula"object in a way thatbrmsitself cannot modify. - Deprecate
use_subgroupinbrm_marginal_draws(). The subgroup is now always part of the reference grid when declared inbrm_data(). To marginalize over subgroup, declare it incovariatesinstead. - Prevent overplotting multiple subgroups in
brm_plot_compare(). - Update the subgroup vignette to reflect all the changes above.
Custom estimation of marginal means
- Implement a new
brm_transform_marginal()to transform model parameters to marginal means (#53). - Use
brm_transform_marginal()instead ofemmeansinbrm_marginal_draws()to derive posterior draws of marginal means based on posterior draws of model parameters (#53). - Explain the custom marginal mean calculation in a new
inference.Rmdvignette. - Rename
methods.Rmdtomodel.Rmdsinceinference.Rmdalso discusses methods.
Other improvements
- Extend
brm_formula()andbrm_marginal_draws()to optionally model homogeneous variances, as well as ARMA, AR, MA, and compound symmetry correlation structures. - Restrict
brm_model()to continuous families with identity links. - In
brm_prior_simple(), deprecate thecorrelationargument in favor of individual correlation-specific arguments such asunstructuredandcompound_symmetry. - Ensure model matrices are full rank (#99).
brms.mmrm 0.1.0
CRAN release: 2024-02-15
- Deprecate
brm_simulate()in favor ofbrm_simulate_simple()(#3). The latter has a more specific name to disambiguate it from other simulation functions, and its parameterization conforms to the one in the methods vignette. - Add new functions for nuanced simulations:
brm_simulate_outline(),brm_simulate_continuous(),brm_simulate_categorical()(#3). - In
brm_model(), remove rows with missing responses. These rows are automatically removed bybrmsanyway, and by handling by handling this inbrms.mmrm, we avoid a warning. - Add subgroup analysis functionality and validate the subgroup model with simulation-based calibration (#18).
- Zero-pad numeric indexes in simulated data so the levels sort as expected.
- In
brm_data(), deprecatelevel_controlin favor ofreference_group. - In
brm_data(), deprecatelevel_baselinein favor ofreference_time. - In
brm_formula(), deprecate argumentseffect_baseline,effect_group,effect_time,interaction_baseline, andinteraction_groupin favor ofbaseline,group,time,baseline_time, andgroup_time, respectively. - Propagate values in the
missingcolumn inbrm_data_change()such that a value in the change from baseline is labeled missing if either the baseline response is missing or the post-baseline response is missing. - Change the names in the output of
brm_marginal_draws()to be more internally consistent and fit better with the addition of subgroup-specific marginals (#18). - Allow
brm_plot_compare()andbrm_plot_draws()to select the x axis variable and faceting variables. - Allow
brm_plot_compare()to choose the primary comparison of interest (source of the data, discrete time, treatment group, or subgroup level).