Create an informative prior archetype for cell means.
Usage
brm_archetype_cells(
data,
intercept = FALSE,
baseline = !is.null(attr(data, "brm_baseline")),
baseline_subgroup = !is.null(attr(data, "brm_baseline")) && !is.null(attr(data,
"brm_subgroup")),
baseline_subgroup_time = !is.null(attr(data, "brm_baseline")) && !is.null(attr(data,
"brm_subgroup")),
baseline_time = !is.null(attr(data, "brm_baseline")),
covariates = TRUE,
clda = FALSE,
prefix_interest = "x_",
prefix_nuisance = "nuisance_"
)
Arguments
- data
A classed data frame from
brm_data()
, or an informative prior archetype from a function likebrm_archetype_successive_cells()
.- intercept
TRUE
to make one of the parameters an intercept,FALSE
otherwise. IfTRUE
, then the interpretation of the parameters in the "Details" section will change, and you are responsible for manually callingsummary()
on the archetype and interpreting the parameters according to the output. In addition, you are responsible for setting an appropriate prior on the intercept. In normal usage,brms
looks for a model parameter called"Intercept"
and uses the data to set the prior to help the MCMC runs smoothly. Ifintercept = TRUE
for informative prior archetypes, the intercept will be called something else, andbrms
cannot auto-generate a sensible default prior.- baseline
Logical of length 1.
TRUE
to include an additive effect for baseline response,FALSE
to omit. Default isTRUE
ifbrm_data()
previously declared a baseline variable in the dataset. Ignored for informative prior archetypes. For informative prior archetypes, this option should be set in functions likebrm_archetype_successive_cells()
rather than inbrm_formula()
in order to make sure columns are appropriately centered and the underlying model matrix has full rank.- baseline_subgroup
Logical of length 1.
- baseline_subgroup_time
Logical of length 1.
TRUE
to include baseline-by-subgroup-by-time interaction,FALSE
to omit. Default isTRUE
ifbrm_data()
previously declared baseline and subgroup variables in the dataset. Ignored for informative prior archetypes. For informative prior archetypes, this option should be set in functions likebrm_archetype_successive_cells()
rather than inbrm_formula()
in order to make sure columns are appropriately centered and the underlying model matrix has full rank.- baseline_time
Logical of length 1.
TRUE
to include baseline-by-time interaction,FALSE
to omit. Default isTRUE
ifbrm_data()
previously declared a baseline variable in the dataset. Ignored for informative prior archetypes. For informative prior archetypes, this option should be set in functions likebrm_archetype_successive_cells()
rather than inbrm_formula()
in order to make sure columns are appropriately centered and the underlying model matrix has full rank.- covariates
Logical of length 1.
TRUE
(default) to include any additive covariates declared with thecovariates
argument ofbrm_data()
,FALSE
to omit. For informative prior archetypes, this option is set in functions likebrm_archetype_successive_cells()
rather than inbrm_formula()
in order to make sure columns are appropriately centered and the underlying model matrix has full rank.- clda
TRUE
to opt into constrained longitudinal data analysis (cLDA),FALSE
otherwise. To use cLDA,reference_time
must have been non-NULL
in the call tobrm_data()
used to construct the data.Some archetypes cannot support cLDA (e.g.
brm_archetype_average_cells()
andbrm_archetype_average_effects()
).In cLDA, the fixed effects parameterization is restricted such that all treatment groups are pooled at baseline. (If you supplied a
subgroup
variable inbrm_data()
, then this constraint is applied separately within each subgroup variable.) cLDA may result in more precise estimates when thetime
variable has a baseline level and the baseline outcomes are recorded before randomization in a clinical trial.- prefix_interest
Character string to prepend to the new columns of generated fixed effects of interest (relating to group, subgroup, and/or time). In rare cases, you may need to set a non-default prefix to prevent name conflicts with existing columns in the data, or rename the columns in your data.
prefix_interest
must not be the same value asprefix_nuisance
.- prefix_nuisance
Same as
prefix_interest
, but relating to generated fixed effects NOT of interest (not relating to group, subgroup, or time). Must not be the same value asprefix_interest
.
Value
A special classed tibble
with data tailored to
the successive differences archetype. The dataset is augmented with
extra columns with the "archetype_"
prefix, as well as special
attributes to tell downstream functions like brm_formula()
what to
do with the object.
Details
In this archetype, each fixed effect is a cell mean: the group mean for a given value of treatment group and discrete time (and subgroup level, if applicable).
Prior labeling for brm_archetype_cells()
Within each treatment group, each model parameter is a cell mean,
and the labeling scheme in brm_prior_label()
and
brm_prior_archetype()
translate easily. For example,
brm_prior_label(code = "normal(1.2, 5)", group = "B", time = "VISIT2")
declares a normal(1.2, 5)
prior on the cell mean of treatment
group B
at discrete time point VISIT2
.
To confirm that you set the prior correctly, compare the brms
prior
with the output of summary(your_archetype)
.
See the examples for details.
Nuisance variables
In the presence of covariate adjustment, functions like
brm_archetype_successive_cells()
convert nuisance factors into binary
dummy variables, then center all those dummy variables and any
continuous nuisance variables at their means in the data.
This ensures that the main model coefficients
of interest are not implicitly conditional on a subset of the data.
In other words, preprocessing nuisance variables this way preserves
the interpretations of the fixed effects of interest, and it ensures
informative priors can be specified correctly.
Prior labeling
Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:
1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].
2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.
For informative prior archetypes, this process is much more convenient
and robust than manually calling brms::set_prior()
.
However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype
to archetype, and it is documented in the help pages of
archetype-specific functions such as brm_archetype_successive_cells()
.
See also
Other informative prior archetypes:
brm_archetype_average_cells()
,
brm_archetype_average_effects()
,
brm_archetype_effects()
,
brm_archetype_successive_cells()
,
brm_archetype_successive_effects()
Examples
set.seed(0L)
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
)
dplyr::select(
data,
group,
time,
patient,
starts_with("biomarker"),
starts_with("status")
)
#> # A tibble: 600 × 7
#> group time patient biomarker1 biomarker2 status1 status2
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
#> 1 group_1 time_2 patient_001 -1.42 -0.287 absent present
#> 2 group_1 time_3 patient_001 -1.42 -0.287 absent present
#> 3 group_1 time_4 patient_001 -1.42 -0.287 absent present
#> 4 group_1 time_2 patient_002 -1.67 1.84 absent present
#> 5 group_1 time_3 patient_002 -1.67 1.84 absent present
#> 6 group_1 time_4 patient_002 -1.67 1.84 absent present
#> 7 group_1 time_2 patient_003 1.38 -0.157 absent absent
#> 8 group_1 time_3 patient_003 1.38 -0.157 absent absent
#> 9 group_1 time_4 patient_003 1.38 -0.157 absent absent
#> 10 group_1 time_2 patient_004 -0.920 -1.39 present present
#> # ℹ 590 more rows
archetype <- brm_archetype_cells(data)
archetype
#> # A tibble: 600 × 23
#> x_group_1_time_2 x_group_1_time_3 x_group_1_time_4 x_group_2_time_2
#> * <int> <int> <int> <int>
#> 1 1 0 0 0
#> 2 0 1 0 0
#> 3 0 0 1 0
#> 4 1 0 0 0
#> 5 0 1 0 0
#> 6 0 0 1 0
#> 7 1 0 0 0
#> 8 0 1 0 0
#> 9 0 0 1 0
#> 10 1 0 0 0
#> # ℹ 590 more rows
#> # ℹ 19 more variables: x_group_2_time_3 <int>, x_group_2_time_4 <int>,
#> # nuisance_biomarker1 <dbl>, nuisance_biomarker2 <dbl>,
#> # nuisance_status1_absent <dbl>, nuisance_status2_present <dbl>,
#> # nuisance_baseline <dbl>, nuisance_baseline.timetime_2 <dbl>,
#> # nuisance_baseline.timetime_3 <dbl>, patient <chr>, time <chr>, group <chr>,
#> # missing <lgl>, change <dbl>, baseline <dbl>, biomarker1 <dbl>, …
summary(archetype)
#> # This is the "cells" informative prior archetype in brms.mmrm.
#> # The following equations show the relationships between the
#> # marginal means (left-hand side) and fixed effect parameters
#> # (right-hand side).
#> #
#> # group_1:time_2 = x_group_1_time_2
#> # group_1:time_3 = x_group_1_time_3
#> # group_1:time_4 = x_group_1_time_4
#> # group_2:time_2 = x_group_2_time_2
#> # group_2:time_3 = x_group_2_time_3
#> # group_2:time_4 = x_group_2_time_4
formula <- brm_formula(archetype)
formula
#> change ~ 0 + x_group_1_time_2 + x_group_1_time_3 + x_group_1_time_4 + x_group_2_time_2 + x_group_2_time_3 + x_group_2_time_4 + nuisance_biomarker1 + nuisance_biomarker2 + nuisance_status1_absent + nuisance_status2_present + nuisance_baseline + nuisance_baseline.timetime_2 + nuisance_baseline.timetime_3 + unstr(time = time, gr = patient)
#> sigma ~ 0 + time
prior <- brm_prior_label(
code = "normal(1, 2.2)",
group = "group_1",
time = "time_2"
) |>
brm_prior_label("normal(1, 3.3)", group = "group_1", time = "time_3") |>
brm_prior_label("normal(1, 4.4)", group = "group_1", time = "time_4") |>
brm_prior_label("normal(2, 2.2)", group = "group_2", time = "time_2") |>
brm_prior_label("normal(2, 3.3)", group = "group_2", time = "time_3") |>
brm_prior_label("normal(2, 4.4)", group = "group_2", time = "time_4") |>
brm_prior_archetype(archetype)
prior
#> prior class coef group resp dpar nlpar lb ub source
#> normal(1, 2.2) b x_group_1_time_2 <NA> <NA> user
#> normal(1, 3.3) b x_group_1_time_3 <NA> <NA> user
#> normal(1, 4.4) b x_group_1_time_4 <NA> <NA> user
#> normal(2, 2.2) b x_group_2_time_2 <NA> <NA> user
#> normal(2, 3.3) b x_group_2_time_3 <NA> <NA> user
#> normal(2, 4.4) b x_group_2_time_4 <NA> <NA> user
class(prior)
#> [1] "brmsprior" "data.frame"
if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = archetype,
formula = formula,
prior = prior,
chains = 1,
iter = 100,
refresh = 0
)
)
)
)
suppressWarnings(print(model))
brms::prior_summary(model)
draws <- brm_marginal_draws(
data = archetype,
formula = formula,
model = model
)
summaries_model <- brm_marginal_summaries(draws)
summaries_data <- brm_marginal_data(data)
brm_plot_compare(model = summaries_model, data = summaries_data)
}