Cell-means-like time-averaged archetype
Source:R/brm_archetype_average_cells.R
brm_archetype_average_cells.Rd
Create a cell-means-like informative prior archetype with a special fixed effect to represent the average across time.
Usage
brm_archetype_average_cells(
data,
intercept = FALSE,
baseline = !is.null(attr(data, "brm_baseline")),
baseline_subgroup = !is.null(attr(data, "brm_baseline")) && !is.null(attr(data,
"brm_subgroup")),
baseline_subgroup_time = !is.null(attr(data, "brm_baseline")) && !is.null(attr(data,
"brm_subgroup")),
baseline_time = !is.null(attr(data, "brm_baseline")),
covariates = TRUE,
prefix_interest = "x_",
prefix_nuisance = "nuisance_"
)
Arguments
- data
A classed data frame from
brm_data()
, or an informative prior archetype from a function likebrm_archetype_successive_cells()
.- intercept
Logical of length 1.
TRUE
(default) to include an intercept,FALSE
to omit.- baseline
Logical of length 1.
TRUE
to include an additive effect for baseline response,FALSE
to omit. Default isTRUE
ifbrm_data()
previously declared a baseline variable in the dataset. Ignored for informative prior archetypes. For informative prior archetypes, this option should be set in functions likebrm_archetype_successive_cells()
rather than inbrm_formula()
in order to make sure columns are appropriately centered and the underlying model matrix has full rank.- baseline_subgroup
Logical of length 1.
- baseline_subgroup_time
Logical of length 1.
TRUE
to include baseline-by-subgroup-by-time interaction,FALSE
to omit. Default isTRUE
ifbrm_data()
previously declared baseline and subgroup variables in the dataset. Ignored for informative prior archetypes. For informative prior archetypes, this option should be set in functions likebrm_archetype_successive_cells()
rather than inbrm_formula()
in order to make sure columns are appropriately centered and the underlying model matrix has full rank.- baseline_time
Logical of length 1.
TRUE
to include baseline-by-time interaction,FALSE
to omit. Default isTRUE
ifbrm_data()
previously declared a baseline variable in the dataset. Ignored for informative prior archetypes. For informative prior archetypes, this option should be set in functions likebrm_archetype_successive_cells()
rather than inbrm_formula()
in order to make sure columns are appropriately centered and the underlying model matrix has full rank.- covariates
Logical of length 1.
TRUE
(default) to include any additive covariates declared with thecovariates
argument ofbrm_data()
,FALSE
to omit. For informative prior archetypes, this option is set in functions likebrm_archetype_successive_cells()
rather than inbrm_formula()
in order to make sure columns are appropriately centered and the underlying model matrix has full rank.- prefix_interest
Character string to prepend to the new columns of generated fixed effects of interest (relating to group, subgroup, and/or time). In rare cases, you may need to set a non-default prefix to prevent name conflicts with existing columns in the data, or rename the columns in your data.
prefix_interest
must not be the same value asprefix_nuisance
.- prefix_nuisance
Same as
prefix_interest
, but relating to generated fixed effects NOT of interest (not relating to group, subgroup, or time). Must not be the same value asprefix_interest
.
Value
A special classed tibble
with data tailored to
the cell-means-like time-averaged archetype. The dataset is augmented
with extra columns with the "archetype_"
prefix, as well as special
attributes to tell downstream functions like brm_formula()
what to
do with the object.
Details
This archetype has a special fixed effect for each treatment group to represent the mean response averaged across all the time points.
To illustrate, suppose the dataset has two treatment groups A and B, time points 1, 2, and 3, and no other covariates.
Let mu_gt
be the marginal mean of the response at group
g
time t
given data and hyperparameters.
The model has fixed effect parameters beta_1
, beta_2
, ..., beta_6
which express the marginal means mu_gt
as follows:
`mu_A1 = 3 * beta_1 - beta_2 - beta_3`
`mu_A2 = beta_2`
`mu_A3 = beta_3`
`mu_B1 = 3 * beta_4 - beta_5 - beta_6`
`mu_B2 = beta_5`
`mu_B3 = beta_6`
For group A, beta_1
is the average response in group A
averaged across time points. You can confirm this yourself
by expressing the average across time
(mu_A1 + mu_A2 + mu_A3) / 3
in terms of the beta_*
parameters
and confirming that the expression simplifies down to just beta_1
.
beta_2
represents the mean response in group A at time 2, and
beta_3
represents the mean response in group A at time 3.
beta_4
, beta_5
, and beta_6
are analogous for group B.
Prior labeling for brm_archetype_average_cells()
Within each treatment group, the initial time point represents
the average, and each successive time point represents the response
within that actual time.
To illustrate, consider the example in the Details section.
In the labeling scheme for brm_archetype_average_cells()
,
you can label the prior on beta_1
using
brm_prior_label(code = "normal(1.2, 5)", group = "A", time = "1")
.
Similarly, you cal label the prior on beta_5
with
brm_prior_label(code = "normal(1.3, 7)", group = "B", time = "2")
.
To confirm that you set the prior correctly, compare the brms
prior
with the output of summary(your_archetype)
.
See the examples for details.
Nuisance variables
In the presence of covariate adjustment, functions like
brm_archetype_successive_cells()
convert nuisance factors into binary
dummy variables, then center all those dummy variables and any
continuous nuisance variables at their means in the data.
This ensures that the main model coefficients
of interest are not implicitly conditional on a subset of the data.
In other words, preprocessing nuisance variables this way preserves
the interpretations of the fixed effects of interest, and it ensures
informative priors can be specified correctly.
Prior labeling
Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:
1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].
2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.
For informative prior archetypes, this process is much more convenient
and robust than manually calling brms::set_prior()
.
However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype
to archetype, and it is documented in the help pages of
archetype-specific functions such as brm_archetype_successive_cells()
.
See also
Other informative prior archetypes:
brm_archetype_average_effects()
,
brm_archetype_cells()
,
brm_archetype_effects()
,
brm_archetype_successive_cells()
,
brm_archetype_successive_effects()
Examples
set.seed(0L)
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
)
dplyr::select(
data,
group,
time,
patient,
starts_with("biomarker"),
starts_with("status")
)
#> # A tibble: 600 × 7
#> group time patient biomarker1 biomarker2 status1 status2
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
#> 1 group_1 time_2 patient_001 -1.42 -0.287 absent present
#> 2 group_1 time_3 patient_001 -1.42 -0.287 absent present
#> 3 group_1 time_4 patient_001 -1.42 -0.287 absent present
#> 4 group_1 time_2 patient_002 -1.67 1.84 absent present
#> 5 group_1 time_3 patient_002 -1.67 1.84 absent present
#> 6 group_1 time_4 patient_002 -1.67 1.84 absent present
#> 7 group_1 time_2 patient_003 1.38 -0.157 absent absent
#> 8 group_1 time_3 patient_003 1.38 -0.157 absent absent
#> 9 group_1 time_4 patient_003 1.38 -0.157 absent absent
#> 10 group_1 time_2 patient_004 -0.920 -1.39 present present
#> # ℹ 590 more rows
archetype <- brm_archetype_average_cells(data)
archetype
#> # A tibble: 600 × 23
#> x_group_1_time_2 x_group_1_time_3 x_group_1_time_4 x_group_2_time_2
#> * <int> <int> <int> <int>
#> 1 3 -1 -1 0
#> 2 0 1 0 0
#> 3 0 0 1 0
#> 4 3 -1 -1 0
#> 5 0 1 0 0
#> 6 0 0 1 0
#> 7 3 -1 -1 0
#> 8 0 1 0 0
#> 9 0 0 1 0
#> 10 3 -1 -1 0
#> # ℹ 590 more rows
#> # ℹ 19 more variables: x_group_2_time_3 <int>, x_group_2_time_4 <int>,
#> # nuisance_biomarker1 <dbl>, nuisance_biomarker2 <dbl>,
#> # nuisance_status1_absent <dbl>, nuisance_status2_present <dbl>,
#> # nuisance_baseline <dbl>, nuisance_baseline.timetime_2 <dbl>,
#> # nuisance_baseline.timetime_3 <dbl>, patient <chr>, time <chr>, group <chr>,
#> # missing <lgl>, change <dbl>, baseline <dbl>, biomarker1 <dbl>, …
summary(archetype)
#> # This is the "average cells" informative prior archetype in brms.mmrm.
#> # The following equations show the relationships between the
#> # marginal means (left-hand side) and fixed effect parameters
#> # (right-hand side).
#> #
#> # group_1:time_2 = 3*x_group_1_time_2 - x_group_1_time_3 - x_group_1_time_4
#> # group_1:time_3 = x_group_1_time_3
#> # group_1:time_4 = x_group_1_time_4
#> # group_2:time_2 = 3*x_group_2_time_2 - x_group_2_time_3 - x_group_2_time_4
#> # group_2:time_3 = x_group_2_time_3
#> # group_2:time_4 = x_group_2_time_4
formula <- brm_formula(archetype)
formula
#> change ~ 0 + x_group_1_time_2 + x_group_1_time_3 + x_group_1_time_4 + x_group_2_time_2 + x_group_2_time_3 + x_group_2_time_4 + nuisance_biomarker1 + nuisance_biomarker2 + nuisance_status1_absent + nuisance_status2_present + nuisance_baseline + nuisance_baseline.timetime_2 + nuisance_baseline.timetime_3 + unstr(time = time, gr = patient)
#> sigma ~ 0 + time
prior <- brm_prior_label(
code = "normal(1, 2.2)",
group = "group_1",
time = "time_2"
) |>
brm_prior_label("normal(1, 3.3)", group = "group_1", time = "time_3") |>
brm_prior_label("normal(1, 4.4)", group = "group_1", time = "time_4") |>
brm_prior_label("normal(2, 2.2)", group = "group_2", time = "time_2") |>
brm_prior_label("normal(2, 3.3)", group = "group_2", time = "time_3") |>
brm_prior_label("normal(2, 4.4)", group = "group_2", time = "time_4") |>
brm_prior_archetype(archetype)
prior
#> prior class coef group resp dpar nlpar lb ub source
#> normal(1, 2.2) b x_group_1_time_2 <NA> <NA> user
#> normal(1, 3.3) b x_group_1_time_3 <NA> <NA> user
#> normal(1, 4.4) b x_group_1_time_4 <NA> <NA> user
#> normal(2, 2.2) b x_group_2_time_2 <NA> <NA> user
#> normal(2, 3.3) b x_group_2_time_3 <NA> <NA> user
#> normal(2, 4.4) b x_group_2_time_4 <NA> <NA> user
class(prior)
#> [1] "brmsprior" "data.frame"
if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = archetype,
formula = formula,
prior = prior,
chains = 1,
iter = 100,
refresh = 0
)
)
)
)
suppressWarnings(print(model))
brms::prior_summary(model)
draws <- brm_marginal_draws(
data = archetype,
formula = formula,
model = model
)
summaries_model <- brm_marginal_summaries(draws)
summaries_data <- brm_marginal_data(data)
brm_plot_compare(model = summaries_model, data = summaries_data)
}