Tidying CrmPackClass
objects
Source: R/CrmPackClass-methods.R
, R/Data-methods.R
, R/Simulations-class.R
, and 4 more
tidy.Rd
In the spirit of the broom
package, provide a method to convert a
CrmPackClass
object to a (list of) tibbles.
Following the principles of the broom
package, convert a CrmPackClass
object to a (list of) tibbles. This is a basic, default representation.
A method that tidies a GeneralData
object.
A method that tidies a DataGrouped
object.
A method that tidies a DataDA
object.
A method that tidies a DataDual
object.
A method that tidies a DataParts
object.
A method that tidies a DataMixture
object.
A method that tidies a DataOrdinal
object.
A method that tidies a LogisticIndepBeta
object.
A method that tidies a Effloglog
object.
Usage
tidy(x, ...)
# S4 method for class 'CrmPackClass'
tidy(x, ...)
# S4 method for class 'GeneralData'
tidy(x, ...)
# S4 method for class 'DataGrouped'
tidy(x, ...)
# S4 method for class 'DataDA'
tidy(x, ...)
# S4 method for class 'DataDual'
tidy(x, ...)
# S4 method for class 'DataParts'
tidy(x, ...)
# S4 method for class 'DataMixture'
tidy(x, ...)
# S4 method for class 'DataOrdinal'
tidy(x, ...)
# S4 method for class 'Simulations'
tidy(x, ...)
# S4 method for class 'LogisticIndepBeta'
tidy(x, ...)
# S4 method for class 'Effloglog'
tidy(x, ...)
# S4 method for class 'IncrementsMaxToxProb'
tidy(x, ...)
# S4 method for class 'IncrementsRelative'
tidy(x, ...)
# S4 method for class 'CohortSizeDLT'
tidy(x, ...)
# S4 method for class 'CohortSizeMin'
tidy(x, ...)
# S4 method for class 'CohortSizeMax'
tidy(x, ...)
# S4 method for class 'CohortSizeRange'
tidy(x, ...)
# S4 method for class 'CohortSizeParts'
tidy(x, ...)
# S4 method for class 'IncrementsMin'
tidy(x, ...)
# S4 method for class 'IncrementsRelative'
tidy(x, ...)
# S4 method for class 'IncrementsRelativeDLT'
tidy(x, ...)
# S4 method for class 'IncrementsRelativeParts'
tidy(x, ...)
# S4 method for class 'NextBestNCRM'
tidy(x, ...)
# S4 method for class 'NextBestNCRMLoss'
tidy(x, ...)
# S4 method for class 'DualDesign'
tidy(x, ...)
# S4 method for class 'Samples'
tidy(x, ...)
Value
A (list of) tibble(s) representing the object in tidy form.
The tibble
object.
The tibble
object.
The tibble
object.
The tibble
object.
The tibble
object.
The tibble
object.
The tibble
object.
The list
of tibble
objects.
The list
of tibble
objects.
Examples
CohortSizeConst(3) %>% tidy()
#> # A tibble: 1 × 1
#> size
#> <int>
#> 1 3
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
#> # A tibble: 10 × 11
#> ID Cohort Dose Placebo NObs NGrid DoseGrid XLevel Cat0 Cat1 Cat2
#> <int> <int> <dbl> <lgl> <int> <int> <list> <int> <lgl> <lgl> <lgl>
#> 1 1 1 10 FALSE 10 10 <dbl [10]> 1 TRUE FALSE FALSE
#> 2 2 2 20 FALSE 10 10 <dbl [10]> 2 TRUE FALSE FALSE
#> 3 3 3 30 FALSE 10 10 <dbl [10]> 3 TRUE FALSE FALSE
#> 4 4 4 40 FALSE 10 10 <dbl [10]> 4 TRUE FALSE FALSE
#> 5 5 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 6 6 5 50 FALSE 10 10 <dbl [10]> 5 FALSE TRUE FALSE
#> 7 7 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 8 8 6 60 FALSE 10 10 <dbl [10]> 6 TRUE FALSE FALSE
#> 9 9 6 60 FALSE 10 10 <dbl [10]> 6 FALSE TRUE FALSE
#> 10 10 6 60 FALSE 10 10 <dbl [10]> 6 FALSE FALSE TRUE
.DefaultDataGrouped() %>% tidy()
#> # A tibble: 3 × 10
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid Group
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <fct>
#> 1 1 1 1 1 FALSE FALSE 3 11 <dbl [11]> mono
#> 2 2 2 3 2 FALSE FALSE 3 11 <dbl [11]> mono
#> 3 3 3 5 3 FALSE FALSE 3 11 <dbl [11]> combo
.DefaultDataDA() %>% tidy()
#> # A tibble: 8 × 12
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid U T0 TMax
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <dbl> <dbl> <dbl>
#> 1 1 1 0.1 1 FALSE FALSE 8 41 <dbl> 42 0 60
#> 2 2 2 0.5 2 FALSE FALSE 8 41 <dbl> 30 15 60
#> 3 3 3 1.5 3 TRUE FALSE 8 41 <dbl> 15 30 60
#> 4 4 4 3 4 TRUE FALSE 8 41 <dbl> 5 40 60
#> 5 5 5 6 5 FALSE FALSE 8 41 <dbl> 20 55 60
#> 6 6 6 10 6 FALSE FALSE 8 41 <dbl> 25 70 60
#> 7 7 6 10 6 TRUE FALSE 8 41 <dbl> 30 75 60
#> 8 8 6 10 6 FALSE FALSE 8 41 <dbl> 60 85 60
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
#> # A tibble: 10 × 11
#> ID Cohort Dose Placebo NObs NGrid DoseGrid XLevel Cat0 Cat1 Cat2
#> <int> <int> <dbl> <lgl> <int> <int> <list> <int> <lgl> <lgl> <lgl>
#> 1 1 1 10 FALSE 10 10 <dbl [10]> 1 TRUE FALSE FALSE
#> 2 2 2 20 FALSE 10 10 <dbl [10]> 2 TRUE FALSE FALSE
#> 3 3 3 30 FALSE 10 10 <dbl [10]> 3 TRUE FALSE FALSE
#> 4 4 4 40 FALSE 10 10 <dbl [10]> 4 TRUE FALSE FALSE
#> 5 5 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 6 6 5 50 FALSE 10 10 <dbl [10]> 5 FALSE TRUE FALSE
#> 7 7 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 8 8 6 60 FALSE 10 10 <dbl [10]> 6 TRUE FALSE FALSE
#> 9 9 6 60 FALSE 10 10 <dbl [10]> 6 FALSE TRUE FALSE
#> 10 10 6 60 FALSE 10 10 <dbl [10]> 6 FALSE FALSE TRUE
.DefaultDataGrouped() %>% tidy()
#> # A tibble: 3 × 10
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid Group
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <fct>
#> 1 1 1 1 1 FALSE FALSE 3 11 <dbl [11]> mono
#> 2 2 2 3 2 FALSE FALSE 3 11 <dbl [11]> mono
#> 3 3 3 5 3 FALSE FALSE 3 11 <dbl [11]> combo
.DefaultDataDA() %>% tidy()
#> # A tibble: 8 × 12
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid U T0 TMax
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <dbl> <dbl> <dbl>
#> 1 1 1 0.1 1 FALSE FALSE 8 41 <dbl> 42 0 60
#> 2 2 2 0.5 2 FALSE FALSE 8 41 <dbl> 30 15 60
#> 3 3 3 1.5 3 TRUE FALSE 8 41 <dbl> 15 30 60
#> 4 4 4 3 4 TRUE FALSE 8 41 <dbl> 5 40 60
#> 5 5 5 6 5 FALSE FALSE 8 41 <dbl> 20 55 60
#> 6 6 6 10 6 FALSE FALSE 8 41 <dbl> 25 70 60
#> 7 7 6 10 6 TRUE FALSE 8 41 <dbl> 30 75 60
#> 8 8 6 10 6 FALSE FALSE 8 41 <dbl> 60 85 60
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
#> # A tibble: 10 × 11
#> ID Cohort Dose Placebo NObs NGrid DoseGrid XLevel Cat0 Cat1 Cat2
#> <int> <int> <dbl> <lgl> <int> <int> <list> <int> <lgl> <lgl> <lgl>
#> 1 1 1 10 FALSE 10 10 <dbl [10]> 1 TRUE FALSE FALSE
#> 2 2 2 20 FALSE 10 10 <dbl [10]> 2 TRUE FALSE FALSE
#> 3 3 3 30 FALSE 10 10 <dbl [10]> 3 TRUE FALSE FALSE
#> 4 4 4 40 FALSE 10 10 <dbl [10]> 4 TRUE FALSE FALSE
#> 5 5 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 6 6 5 50 FALSE 10 10 <dbl [10]> 5 FALSE TRUE FALSE
#> 7 7 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 8 8 6 60 FALSE 10 10 <dbl [10]> 6 TRUE FALSE FALSE
#> 9 9 6 60 FALSE 10 10 <dbl [10]> 6 FALSE TRUE FALSE
#> 10 10 6 60 FALSE 10 10 <dbl [10]> 6 FALSE FALSE TRUE
.DefaultDataGrouped() %>% tidy()
#> # A tibble: 3 × 10
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid Group
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <fct>
#> 1 1 1 1 1 FALSE FALSE 3 11 <dbl [11]> mono
#> 2 2 2 3 2 FALSE FALSE 3 11 <dbl [11]> mono
#> 3 3 3 5 3 FALSE FALSE 3 11 <dbl [11]> combo
.DefaultDataDA() %>% tidy()
#> # A tibble: 8 × 12
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid U T0 TMax
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <dbl> <dbl> <dbl>
#> 1 1 1 0.1 1 FALSE FALSE 8 41 <dbl> 42 0 60
#> 2 2 2 0.5 2 FALSE FALSE 8 41 <dbl> 30 15 60
#> 3 3 3 1.5 3 TRUE FALSE 8 41 <dbl> 15 30 60
#> 4 4 4 3 4 TRUE FALSE 8 41 <dbl> 5 40 60
#> 5 5 5 6 5 FALSE FALSE 8 41 <dbl> 20 55 60
#> 6 6 6 10 6 FALSE FALSE 8 41 <dbl> 25 70 60
#> 7 7 6 10 6 TRUE FALSE 8 41 <dbl> 30 75 60
#> 8 8 6 10 6 FALSE FALSE 8 41 <dbl> 60 85 60
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
#> # A tibble: 10 × 11
#> ID Cohort Dose Placebo NObs NGrid DoseGrid XLevel Cat0 Cat1 Cat2
#> <int> <int> <dbl> <lgl> <int> <int> <list> <int> <lgl> <lgl> <lgl>
#> 1 1 1 10 FALSE 10 10 <dbl [10]> 1 TRUE FALSE FALSE
#> 2 2 2 20 FALSE 10 10 <dbl [10]> 2 TRUE FALSE FALSE
#> 3 3 3 30 FALSE 10 10 <dbl [10]> 3 TRUE FALSE FALSE
#> 4 4 4 40 FALSE 10 10 <dbl [10]> 4 TRUE FALSE FALSE
#> 5 5 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 6 6 5 50 FALSE 10 10 <dbl [10]> 5 FALSE TRUE FALSE
#> 7 7 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 8 8 6 60 FALSE 10 10 <dbl [10]> 6 TRUE FALSE FALSE
#> 9 9 6 60 FALSE 10 10 <dbl [10]> 6 FALSE TRUE FALSE
#> 10 10 6 60 FALSE 10 10 <dbl [10]> 6 FALSE FALSE TRUE
.DefaultDataGrouped() %>% tidy()
#> # A tibble: 3 × 10
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid Group
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <fct>
#> 1 1 1 1 1 FALSE FALSE 3 11 <dbl [11]> mono
#> 2 2 2 3 2 FALSE FALSE 3 11 <dbl [11]> mono
#> 3 3 3 5 3 FALSE FALSE 3 11 <dbl [11]> combo
.DefaultDataDA() %>% tidy()
#> # A tibble: 8 × 12
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid U T0 TMax
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <dbl> <dbl> <dbl>
#> 1 1 1 0.1 1 FALSE FALSE 8 41 <dbl> 42 0 60
#> 2 2 2 0.5 2 FALSE FALSE 8 41 <dbl> 30 15 60
#> 3 3 3 1.5 3 TRUE FALSE 8 41 <dbl> 15 30 60
#> 4 4 4 3 4 TRUE FALSE 8 41 <dbl> 5 40 60
#> 5 5 5 6 5 FALSE FALSE 8 41 <dbl> 20 55 60
#> 6 6 6 10 6 FALSE FALSE 8 41 <dbl> 25 70 60
#> 7 7 6 10 6 TRUE FALSE 8 41 <dbl> 30 75 60
#> 8 8 6 10 6 FALSE FALSE 8 41 <dbl> 60 85 60
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
#> # A tibble: 10 × 11
#> ID Cohort Dose Placebo NObs NGrid DoseGrid XLevel Cat0 Cat1 Cat2
#> <int> <int> <dbl> <lgl> <int> <int> <list> <int> <lgl> <lgl> <lgl>
#> 1 1 1 10 FALSE 10 10 <dbl [10]> 1 TRUE FALSE FALSE
#> 2 2 2 20 FALSE 10 10 <dbl [10]> 2 TRUE FALSE FALSE
#> 3 3 3 30 FALSE 10 10 <dbl [10]> 3 TRUE FALSE FALSE
#> 4 4 4 40 FALSE 10 10 <dbl [10]> 4 TRUE FALSE FALSE
#> 5 5 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 6 6 5 50 FALSE 10 10 <dbl [10]> 5 FALSE TRUE FALSE
#> 7 7 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 8 8 6 60 FALSE 10 10 <dbl [10]> 6 TRUE FALSE FALSE
#> 9 9 6 60 FALSE 10 10 <dbl [10]> 6 FALSE TRUE FALSE
#> 10 10 6 60 FALSE 10 10 <dbl [10]> 6 FALSE FALSE TRUE
.DefaultDataGrouped() %>% tidy()
#> # A tibble: 3 × 10
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid Group
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <fct>
#> 1 1 1 1 1 FALSE FALSE 3 11 <dbl [11]> mono
#> 2 2 2 3 2 FALSE FALSE 3 11 <dbl [11]> mono
#> 3 3 3 5 3 FALSE FALSE 3 11 <dbl [11]> combo
.DefaultDataDA() %>% tidy()
#> # A tibble: 8 × 12
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid U T0 TMax
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <dbl> <dbl> <dbl>
#> 1 1 1 0.1 1 FALSE FALSE 8 41 <dbl> 42 0 60
#> 2 2 2 0.5 2 FALSE FALSE 8 41 <dbl> 30 15 60
#> 3 3 3 1.5 3 TRUE FALSE 8 41 <dbl> 15 30 60
#> 4 4 4 3 4 TRUE FALSE 8 41 <dbl> 5 40 60
#> 5 5 5 6 5 FALSE FALSE 8 41 <dbl> 20 55 60
#> 6 6 6 10 6 FALSE FALSE 8 41 <dbl> 25 70 60
#> 7 7 6 10 6 TRUE FALSE 8 41 <dbl> 30 75 60
#> 8 8 6 10 6 FALSE FALSE 8 41 <dbl> 60 85 60
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
#> # A tibble: 10 × 11
#> ID Cohort Dose Placebo NObs NGrid DoseGrid XLevel Cat0 Cat1 Cat2
#> <int> <int> <dbl> <lgl> <int> <int> <list> <int> <lgl> <lgl> <lgl>
#> 1 1 1 10 FALSE 10 10 <dbl [10]> 1 TRUE FALSE FALSE
#> 2 2 2 20 FALSE 10 10 <dbl [10]> 2 TRUE FALSE FALSE
#> 3 3 3 30 FALSE 10 10 <dbl [10]> 3 TRUE FALSE FALSE
#> 4 4 4 40 FALSE 10 10 <dbl [10]> 4 TRUE FALSE FALSE
#> 5 5 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 6 6 5 50 FALSE 10 10 <dbl [10]> 5 FALSE TRUE FALSE
#> 7 7 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 8 8 6 60 FALSE 10 10 <dbl [10]> 6 TRUE FALSE FALSE
#> 9 9 6 60 FALSE 10 10 <dbl [10]> 6 FALSE TRUE FALSE
#> 10 10 6 60 FALSE 10 10 <dbl [10]> 6 FALSE FALSE TRUE
.DefaultDataGrouped() %>% tidy()
#> # A tibble: 3 × 10
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid Group
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <fct>
#> 1 1 1 1 1 FALSE FALSE 3 11 <dbl [11]> mono
#> 2 2 2 3 2 FALSE FALSE 3 11 <dbl [11]> mono
#> 3 3 3 5 3 FALSE FALSE 3 11 <dbl [11]> combo
.DefaultDataDA() %>% tidy()
#> # A tibble: 8 × 12
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid U T0 TMax
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <dbl> <dbl> <dbl>
#> 1 1 1 0.1 1 FALSE FALSE 8 41 <dbl> 42 0 60
#> 2 2 2 0.5 2 FALSE FALSE 8 41 <dbl> 30 15 60
#> 3 3 3 1.5 3 TRUE FALSE 8 41 <dbl> 15 30 60
#> 4 4 4 3 4 TRUE FALSE 8 41 <dbl> 5 40 60
#> 5 5 5 6 5 FALSE FALSE 8 41 <dbl> 20 55 60
#> 6 6 6 10 6 FALSE FALSE 8 41 <dbl> 25 70 60
#> 7 7 6 10 6 TRUE FALSE 8 41 <dbl> 30 75 60
#> 8 8 6 10 6 FALSE FALSE 8 41 <dbl> 60 85 60
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
#> # A tibble: 10 × 11
#> ID Cohort Dose Placebo NObs NGrid DoseGrid XLevel Cat0 Cat1 Cat2
#> <int> <int> <dbl> <lgl> <int> <int> <list> <int> <lgl> <lgl> <lgl>
#> 1 1 1 10 FALSE 10 10 <dbl [10]> 1 TRUE FALSE FALSE
#> 2 2 2 20 FALSE 10 10 <dbl [10]> 2 TRUE FALSE FALSE
#> 3 3 3 30 FALSE 10 10 <dbl [10]> 3 TRUE FALSE FALSE
#> 4 4 4 40 FALSE 10 10 <dbl [10]> 4 TRUE FALSE FALSE
#> 5 5 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 6 6 5 50 FALSE 10 10 <dbl [10]> 5 FALSE TRUE FALSE
#> 7 7 5 50 FALSE 10 10 <dbl [10]> 5 TRUE FALSE FALSE
#> 8 8 6 60 FALSE 10 10 <dbl [10]> 6 TRUE FALSE FALSE
#> 9 9 6 60 FALSE 10 10 <dbl [10]> 6 FALSE TRUE FALSE
#> 10 10 6 60 FALSE 10 10 <dbl [10]> 6 FALSE FALSE TRUE
.DefaultDataGrouped() %>% tidy()
#> # A tibble: 3 × 10
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid Group
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <fct>
#> 1 1 1 1 1 FALSE FALSE 3 11 <dbl [11]> mono
#> 2 2 2 3 2 FALSE FALSE 3 11 <dbl [11]> mono
#> 3 3 3 5 3 FALSE FALSE 3 11 <dbl [11]> combo
.DefaultDataDA() %>% tidy()
#> # A tibble: 8 × 12
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid U T0 TMax
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <dbl> <dbl> <dbl>
#> 1 1 1 0.1 1 FALSE FALSE 8 41 <dbl> 42 0 60
#> 2 2 2 0.5 2 FALSE FALSE 8 41 <dbl> 30 15 60
#> 3 3 3 1.5 3 TRUE FALSE 8 41 <dbl> 15 30 60
#> 4 4 4 3 4 TRUE FALSE 8 41 <dbl> 5 40 60
#> 5 5 5 6 5 FALSE FALSE 8 41 <dbl> 20 55 60
#> 6 6 6 10 6 FALSE FALSE 8 41 <dbl> 25 70 60
#> 7 7 6 10 6 TRUE FALSE 8 41 <dbl> 30 75 60
#> 8 8 6 10 6 FALSE FALSE 8 41 <dbl> 60 85 60
.DefaultSimulations() %>% tidy()
#> $fit
#> $fit[[1]]
#> middle lower upper
#> 1 0.04881540 0.0002609785 0.2049297
#> 2 0.09464556 0.0032369579 0.2888851
#> 3 0.13152694 0.0100700172 0.3369142
#> 4 0.20872554 0.0415202584 0.4116849
#> 5 0.27380989 0.0854600149 0.4816137
#> 6 0.33032279 0.1358175484 0.5312380
#> 7 0.37966300 0.1778654304 0.5761631
#> 8 0.49324708 0.2669412839 0.7038384
#> 9 0.54751266 0.3082901051 0.7661796
#> 10 0.65198924 0.3749407773 0.8858838
#> 11 0.69482846 0.4068468671 0.9238904
#>
#>
#> $stop_report
#> # A tibble: 1 × 1
#> stop_report[,NA] [,NA] [,"≥ 3 cohorts dosed"] [,"P(0.2 ≤ prob(DLE | NBD) ≤ 0…¹
#> <lgl> <lgl> <lgl> <lgl>
#> 1 TRUE TRUE TRUE TRUE
#> # ℹ abbreviated name: ¹[,"P(0.2 ≤ prob(DLE | NBD) ≤ 0.35) ≥ 0.5"]
#> # ℹ 1 more variable: stop_report[5] <lgl>
#>
#> $data
#> $data[[1]]
#> # A tibble: 16 × 9
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list>
#> 1 1 1 3 2 FALSE FALSE 16 11 <dbl [11]>
#> 2 2 2 5 3 FALSE FALSE 16 11 <dbl [11]>
#> 3 3 3 10 4 FALSE FALSE 16 11 <dbl [11]>
#> 4 4 4 20 6 TRUE FALSE 16 11 <dbl [11]>
#> 5 5 5 20 6 FALSE FALSE 16 11 <dbl [11]>
#> 6 6 5 20 6 FALSE FALSE 16 11 <dbl [11]>
#> 7 7 5 20 6 FALSE FALSE 16 11 <dbl [11]>
#> 8 8 6 25 7 FALSE FALSE 16 11 <dbl [11]>
#> 9 9 6 25 7 TRUE FALSE 16 11 <dbl [11]>
#> 10 10 6 25 7 FALSE FALSE 16 11 <dbl [11]>
#> 11 11 7 25 7 FALSE FALSE 16 11 <dbl [11]>
#> 12 12 7 25 7 TRUE FALSE 16 11 <dbl [11]>
#> 13 13 7 25 7 FALSE FALSE 16 11 <dbl [11]>
#> 14 14 8 25 7 TRUE FALSE 16 11 <dbl [11]>
#> 15 15 8 25 7 TRUE FALSE 16 11 <dbl [11]>
#> 16 16 8 25 7 TRUE FALSE 16 11 <dbl [11]>
#>
#>
#> $doses
#> # A tibble: 1 × 1
#> doses
#> <dbl>
#> 1 15
#>
#> $seed
#> # A tibble: 1 × 1
#> seed
#> <int>
#> 1 819
#>
#> attr(,"class")
#> [1] "tbl_Simulations" "list"
.DefaultLogisticIndepBeta() %>% tidy()
#> $pseudoData
#> # A tibble: 2 × 3
#> Dose N Tox
#> <dbl> <int> <dbl>
#> 1 25 3 1.05
#> 2 300 3 1.8
#>
#> $data
#> # A tibble: 0 × 9
#> # ℹ 9 variables: ID <int>, Cohort <int>, Dose <dbl>, XLevel <int>, Tox <lgl>,
#> # Placebo <lgl>, NObs <int>, NGrid <int>, DoseGrid <list>
#>
#> $params
#> # A tibble: 2 × 3
#> Param mean cov
#> <chr> <dbl> <named list>
#> 1 Phi1 -1.95 <dbl [2 × 2]>
#> 2 Phi2 0.412 <dbl [2 × 2]>
#>
#> attr(,"class")
#> [1] "tbl_LogisticIndepBeta" "list"
.DefaultEffloglog() %>% tidy()
#> $pseudoData
#> # A tibble: 2 × 2
#> Dose Response
#> <dbl> <dbl>
#> 1 25 1.22
#> 2 300 2.51
#>
#> $data
#> # A tibble: 8 × 10
#> ID Cohort Dose XLevel Tox Placebo NObs NGrid DoseGrid W
#> <int> <int> <dbl> <int> <lgl> <lgl> <int> <int> <list> <dbl>
#> 1 1 1 25 1 FALSE FALSE 8 12 <dbl [12]> 0.31
#> 2 2 2 50 2 FALSE FALSE 8 12 <dbl [12]> 0.42
#> 3 3 2 50 2 FALSE FALSE 8 12 <dbl [12]> 0.59
#> 4 4 3 75 3 FALSE FALSE 8 12 <dbl [12]> 0.45
#> 5 5 4 100 4 TRUE FALSE 8 12 <dbl [12]> 0.6
#> 6 6 4 100 4 TRUE FALSE 8 12 <dbl [12]> 0.7
#> 7 7 5 225 9 TRUE FALSE 8 12 <dbl [12]> 0.6
#> 8 8 6 300 12 TRUE FALSE 8 12 <dbl [12]> 0.52
#>
#> $params
#> # A tibble: 2 × 3
#> Param mean cov
#> <chr> <dbl> <named list>
#> 1 theta1 -2.82 <dbl [2 × 2]>
#> 2 theta2 2.71 <dbl [2 × 2]>
#>
#> attr(,"class")
#> [1] "tbl_Effloglog" "list"
IncrementsMaxToxProb(prob = c("DLAE" = 0.2, "CRS" = 0.05)) %>% tidy()
#> # A tibble: 2 × 2
#> Grade Prob
#> <chr> <dbl>
#> 1 DLAE 0.2
#> 2 CRS 0.05
CohortSizeRange(intervals = c(0, 20), cohort_size = c(1, 3)) %>% tidy()
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 20 1
#> 2 20 Inf 3
.DefaultCohortSizeDLT() %>% tidy()
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 1 1
#> 2 1 Inf 3
.DefaultCohortSizeMin() %>% tidy()
#> [[1]]
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 10 1
#> 2 10 Inf 3
#>
#> [[2]]
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 1 1
#> 2 1 Inf 3
#>
#> attr(,"class")
#> [1] "tbl_CohortSizeMin" "tbl_CohortSizeMin" "list"
.DefaultCohortSizeMax() %>% tidy()
#> [[1]]
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 10 1
#> 2 10 Inf 3
#>
#> [[2]]
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 1 1
#> 2 1 Inf 3
#>
#> attr(,"class")
#> [1] "tbl_CohortSizeMax" "tbl_CohortSizeMax" "list"
.DefaultCohortSizeRange() %>% tidy()
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 30 1
#> 2 30 Inf 3
CohortSizeParts(cohort_sizes = c(1, 3)) %>% tidy()
#> # A tibble: 2 × 2
#> part cohort_size
#> <int> <int>
#> 1 1 1
#> 2 2 3
.DefaultIncrementsMin() %>% tidy()
#> [[1]]
#> # A tibble: 3 × 3
#> min max increment
#> <dbl> <dbl> <dbl>
#> 1 0 1 1
#> 2 1 3 0.33
#> 3 3 Inf 0.2
#>
#> [[2]]
#> # A tibble: 2 × 3
#> min max increment
#> <dbl> <dbl> <dbl>
#> 1 0 20 1
#> 2 20 Inf 0.33
#>
#> attr(,"class")
#> [1] "tbl_IncrementsMin" "tbl_IncrementsMin" "list"
CohortSizeRange(intervals = c(0, 20), cohort_size = c(1, 3)) %>% tidy()
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 20 1
#> 2 20 Inf 3
x <- .DefaultIncrementsRelativeDLT()
x %>% tidy()
#> # A tibble: 3 × 3
#> min max increment
#> <dbl> <dbl> <dbl>
#> 1 0 1 1
#> 2 1 3 0.33
#> 3 3 Inf 0.2
.DefaultIncrementsRelativeParts() %>% tidy()
#> $dlt_start
#> # A tibble: 1 × 1
#> dlt_start
#> <int>
#> 1 0
#>
#> $clean_start
#> # A tibble: 1 × 1
#> clean_start
#> <int>
#> 1 1
#>
#> $intervals
#> # A tibble: 2 × 1
#> intervals
#> <dbl>
#> 1 0
#> 2 2
#>
#> $increments
#> # A tibble: 2 × 1
#> increments
#> <dbl>
#> 1 2
#> 2 1
#>
#> attr(,"class")
#> [1] "tbl_IncrementsRelativeParts" "list"
NextBestNCRM(
target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25
) %>% tidy()
#> # A tibble: 3 × 4
#> Range min max max_prob
#> <chr> <dbl> <dbl> <dbl>
#> 1 Underdose 0 0.2 NA
#> 2 Target 0.2 0.35 NA
#> 3 Overdose 0.35 1 0.25
.DefaultNextBestNCRMLoss() %>% tidy()
#> # A tibble: 4 × 5
#> Range Lower Upper LossCoefficient MaxOverdoseProb
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Underdose 0 0.2 1 0.25
#> 2 Target 0.2 0.35 0 0.25
#> 3 Overdose 0.35 0.6 1 0.25
#> 4 Unacceptable 0.6 1 2 0.25
.DefaultDualDesign() %>% tidy()
#> $model
#> $sigma2betaW
#> # A tibble: 1 × 1
#> sigma2betaW
#> <dbl>
#> 1 0.01
#>
#> $rw1
#> # A tibble: 1 × 1
#> rw1
#> <lgl>
#> 1 TRUE
#>
#> $betaZ_params
#> # A tibble: 2 × 3
#> mean cov[,1] [,2] prec[,1] [,2]
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 1 0 1 0
#> 2 1 0 1 0 1
#>
#> $ref_dose
#> # A tibble: 1 × 1
#> ref_dose
#> <pstv_nmb>
#> 1 1
#>
#> $use_log_dose
#> # A tibble: 1 × 1
#> use_log_dose
#> <lgl>
#> 1 FALSE
#>
#> $sigma2W
#> # A tibble: 2 × 1
#> sigma2W
#> <dbl>
#> 1 0.1
#> 2 0.1
#>
#> $rho
#> # A tibble: 2 × 1
#> rho
#> <dbl>
#> 1 1
#> 2 1
#>
#> $use_fixed
#> # A tibble: 3 × 1
#> use_fixed
#> <lgl>
#> 1 FALSE
#> 2 FALSE
#> 3 TRUE
#>
#> $datanames
#> # A tibble: 5 × 1
#> datanames
#> <chr>
#> 1 nObs
#> 2 w
#> 3 x
#> 4 xLevel
#> 5 y
#>
#> $datanames_prior
#> # A tibble: 2 × 1
#> datanames_prior
#> <chr>
#> 1 nGrid
#> 2 doseGrid
#>
#> $sample
#> # A tibble: 5 × 1
#> sample
#> <chr>
#> 1 betaZ
#> 2 precW
#> 3 rho
#> 4 betaW
#> 5 delta
#>
#> attr(,"class")
#> [1] "tbl_DualEndpointRW" "list"
#>
#> $data
#> # A tibble: 0 × 10
#> # ℹ 10 variables: ID <int>, Cohort <int>, Dose <dbl>, XLevel <int>, Tox <lgl>,
#> # Placebo <lgl>, NObs <int>, NGrid <int>, DoseGrid <list>, W <dbl>
#>
#> $stopping
#> $stop_list
#> $stop_list[[1]]
#> $target
#> # A tibble: 2 × 1
#> target
#> <dbl>
#> 1 0.9
#> 2 1
#>
#> $is_relative
#> # A tibble: 1 × 1
#> is_relative
#> <lgl>
#> 1 TRUE
#>
#> $prob
#> # A tibble: 1 × 1
#> prob
#> <dbl>
#> 1 0.5
#>
#> $report_label
#> # A tibble: 1 × 1
#> report_label
#> <chr>
#> 1 P(0.9 ≤ Biomarker ≤ 1) ≥ 0.5 (relative)
#>
#> attr(,"class")
#> [1] "tbl_StoppingTargetBiomarker" "list"
#>
#> $stop_list[[2]]
#> # A tibble: 1 × 2
#> nPatients report_label
#> <int> <chr>
#> 1 40 ≥ 40 patients dosed
#>
#>
#> $report_label
#> # A tibble: 1 × 1
#> report_label
#> <chr>
#> 1 NA
#>
#> attr(,"class")
#> [1] "tbl_StoppingAny" "list"
#>
#> $increments
#> # A tibble: 2 × 3
#> min max increment
#> <dbl> <dbl> <dbl>
#> 1 0 20 1
#> 2 20 Inf 0.33
#>
#> $pl_cohort_size
#> # A tibble: 1 × 1
#> size
#> <int>
#> 1 0
#>
#> $nextBest
#> $target
#> # A tibble: 2 × 1
#> target
#> <dbl>
#> 1 0.9
#> 2 1
#>
#> $overdose
#> # A tibble: 2 × 1
#> overdose
#> <dbl>
#> 1 0.35
#> 2 1
#>
#> $max_overdose_prob
#> # A tibble: 1 × 1
#> max_overdose_prob
#> <dbl>
#> 1 0.25
#>
#> $target_relative
#> # A tibble: 1 × 1
#> target_relative
#> <lgl>
#> 1 TRUE
#>
#> $target_thresh
#> # A tibble: 1 × 1
#> target_thresh
#> <dbl>
#> 1 0.01
#>
#> attr(,"class")
#> [1] "tbl_NextBestDualEndpoint" "list"
#>
#> $cohort_size
#> [[1]]
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 30 1
#> 2 30 Inf 3
#>
#> [[2]]
#> # A tibble: 2 × 3
#> min max cohort_size
#> <dbl> <dbl> <int>
#> 1 0 1 1
#> 2 1 Inf 3
#>
#> attr(,"class")
#> [1] "tbl_CohortSizeMax" "tbl_CohortSizeMax" "list"
#>
#> $startingDose
#> # A tibble: 1 × 1
#> startingDose
#> <dbl>
#> 1 3
#>
#> attr(,"class")
#> [1] "tbl_DualDesign" "list"
options <- McmcOptions(
burnin = 100,
step = 1,
samples = 2000
)
emptydata <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))
model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov =
matrix(c(1, -0.5, -0.5, 1),
nrow = 2
),
ref_dose = 56
)
samples <- mcmc(emptydata, model, options)
samples %>% tidy()
#> $data
#> # A tibble: 2,000 × 10
#> Iteration Chain alpha0 alpha1 nChains nParameters nIterations nBurnin nThin
#> <int> <int> <dbl> <dbl> <int> <int> <int> <int> <int>
#> 1 1 1 -1.17 1.24 1 1 2100 100 1
#> 2 2 1 -3.01 6.38 1 1 2100 100 1
#> 3 3 1 0.355 0.537 1 1 2100 100 1
#> 4 4 1 -1.82 6.53 1 1 2100 100 1
#> 5 5 1 -0.851 0.706 1 1 2100 100 1
#> 6 6 1 -2.24 16.4 1 1 2100 100 1
#> 7 7 1 -1.93 7.74 1 1 2100 100 1
#> 8 8 1 -1.50 1.89 1 1 2100 100 1
#> 9 9 1 -0.641 4.09 1 1 2100 100 1
#> 10 10 1 -0.911 2.88 1 1 2100 100 1
#> # ℹ 1,990 more rows
#> # ℹ 1 more variable: parallel <lgl>
#>
#> $options
#> # A tibble: 1 × 5
#> iterations burnin step rng_kind rng_seed
#> <int> <int> <int> <chr> <int>
#> 1 2100 100 1 NA NA
#>
#> attr(,"class")
#> [1] "tbl_Samples" "list"